分析 利用雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的離心率為$\frac{\sqrt{5}}{2}$,求出a,可得雙曲線方程,代入x=5,可得P的坐標(biāo),即可求出四邊形F1QF2P的面積.
解答 解:∵雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的離心率為$\frac{\sqrt{5}}{2}$,
∴$\frac{\sqrt{{a}^{2}+4}}{a}=\frac{\sqrt{5}}{2}$,
∴a=4,
∴雙曲線方程是$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{4}$=1,
x=5代入,可得y0=$±\frac{3}{2}$,
∴四邊形F1QF2P的面積為2×$\frac{1}{2}×4\sqrt{5}×\frac{3}{2}$=6$\sqrt{5}$.
故答案為:6$\sqrt{5}$.
點(diǎn)評(píng) 本題考查雙曲線的方程與性質(zhì),考查四邊形F1QF2P的面積的計(jì)算,求出雙曲線的方程是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (x-3)2+(y-1)2=9 | B. | (x+3)2+(y+1)2=9 | C. | ${({x-4})^2}+{({y-\frac{4}{3}})^2}=16$ | D. | (x-6)2+(y-2)2=9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y2=8x | B. | y2=6x | C. | y2=4x | D. | y2=2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0≤a<1 | B. | -1<a≤0 | C. | a≥1 | D. | a>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{7}{8}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12 | B. | 9 | C. | 8 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{10}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{10}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若α⊥β,m∥α,則m⊥β | B. | 若m⊥α,n⊥β,且m⊥n,則α⊥β | ||
C. | 若m?α,n?β,且α∥β,則m∥n | D. | 若m∥α,n∥β,且m∥n,則α∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | b>c>a |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com