1.△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.且$\overrightarrow m$=(cos(A-B),-sin(A-B)),$\overrightarrow n$=(cosB,sinB),若$\overrightarrow m$•$\overrightarrow n$=-$\frac{3}{5}$.
(Ⅰ)求sin A的值;
(Ⅱ)若a=4$\sqrt{2}$,b=5,求向量$\overrightarrow{BA}$在$\overrightarrow{BC}$方向上的投影.

分析 (Ⅰ)根據(jù)兩角差的余弦公式求出cosB,從而求出sinB即可;(Ⅱ)先求出AB,cosB,從而求出向量$\overrightarrow{BA}$在$\overrightarrow{BC}$方向上的投影.

解答 解:(Ⅰ)∵$\overrightarrow m$=(cos(A-B),-sin(A-B)),$\overrightarrow n$=(cosB,sinB),若$\overrightarrow m$•$\overrightarrow n$=-$\frac{3}{5}$.
∴cos(A-B)cosB-sin(A-B)sinB=-$\frac{3}{5}$,
∴cosB=-$\frac{3}{5}$,
∴sinB=$\frac{4}{5}$;
(Ⅱ)∵cosA=$\frac{{AB}^{2}{+AC}^{2}{-BC}^{2}}{2•AB•AC}$,
∴-$\frac{3}{5}$=$\frac{25{+AB}^{2}-32}{2×5}$,
解得:AB=1,
∴cosB=$\frac{{(4\sqrt{2})}^{2}+1-25}{2×4\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
∴向量$\overrightarrow{BA}$在$\overrightarrow{BC}$方向上的投影為:
|$\overrightarrow{AB}$|cosB=$\frac{\sqrt{2}}{2}$.

點(diǎn)評(píng) 本題考查了三角函數(shù)的恒等變換問題,考查向量的運(yùn)算性質(zhì),是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)y=f(x)=2x3-3x.
(1)求y=f(x)在x=1處的切線方程;
(2)求y=f(x)在區(qū)間[-2,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓D與y軸交于上A、下B兩點(diǎn),橢圓的兩個(gè)焦點(diǎn)F1(0,1)、F2(0,-1),直線y=4是橢圓的一條準(zhǔn)線.
(Ⅰ)求橢圓D的方程;
(Ⅱ)設(shè)以原點(diǎn)為頂點(diǎn),A為焦點(diǎn)的拋物線為C,若過點(diǎn)F1的直線與C相交于不同M、N的兩點(diǎn),求線段MN的中點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\sqrt{3}$sinωx+cosωx+c(ω>0,x∈R,c是實(shí)數(shù)常數(shù))的圖象上的一個(gè)最高點(diǎn)($\frac{π}{6}$,1),與該最高點(diǎn)最近的一個(gè)最低點(diǎn)是($\frac{2π}{3}$,-3)
(1)求函數(shù)f(x)的解析式
(2)在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,且b2=a2+c2+accosB,角A的取值范圍是區(qū)間M,當(dāng)x∈M時(shí),試求函數(shù)f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=exlnx在點(diǎn)(1,f(1))處的切線方程是y=ex-e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)函數(shù)f(x)=2ax2+(a-1)x+3是偶函數(shù),則f(x)=ax+a-1是奇函數(shù)(填奇偶性).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.不等式|$\frac{x+2}{x}$|<1的解集為{x|x<-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.鐵路貨運(yùn)調(diào)度站有A、B兩個(gè)信號(hào)燈,在燈旁?恐、乙、丙三列火車,它們的車長(zhǎng)正好構(gòu)成一個(gè)等差數(shù)列,其中乙車的車長(zhǎng)居中.最開始的時(shí)候,甲、丙兩車車尾對(duì)齊,且車尾正好位于A信號(hào)燈處,而車頭則沖著B信號(hào)燈的方向,乙車的車尾則位于B信號(hào)燈處,車頭則沖著A的方向.現(xiàn)在,三列火車同時(shí)出發(fā)向前行駛,10秒之后三列火車的車頭恰好相遇.再過15秒,甲車恰好完全超過丙車,而丙車也正好完全和乙車錯(cuò)開,請(qǐng)問:甲、乙兩車從車頭相遇直至完全錯(cuò)開一共用了幾秒鐘.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.我校為了了解高三學(xué)生在大慶市第一次模擬考試中對(duì)數(shù)學(xué)的掌握情況,從高三年級(jí)中隨機(jī)抽查了100名學(xué)生的數(shù)學(xué)成績(jī),并制成了頻率直方圖,從圖中可以知道這100名學(xué)生的平均分?jǐn)?shù)和中位數(shù)分別為( 。
A.103.2  113.2B.108.2  108C.103.2  108D.108.2  113.2

查看答案和解析>>

同步練習(xí)冊(cè)答案