【題目】已知橢圓的上頂點(diǎn)為,以為圓心橢圓的長(zhǎng)半軸為半徑的圓與軸的交點(diǎn)分別為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)不經(jīng)過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),且,試探究直線(xiàn)是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo),若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

【答案】1

2)直線(xiàn)過(guò)定點(diǎn),該定點(diǎn)的坐標(biāo)為

【解析】

利用橢圓性質(zhì),求橢圓的方程;根據(jù)題中要求,先將直線(xiàn)QA,PA方程設(shè)出來(lái),再與橢圓聯(lián)立方程,分別求出Q,P兩點(diǎn)坐標(biāo),根據(jù)P,Q寫(xiě)出直線(xiàn)方程l,然后分析它的定點(diǎn)問(wèn)題

解:(1)依題意知點(diǎn)的坐標(biāo)為,則以點(diǎn)圓心,以為半徑的圓的方程為,由圓軸的交點(diǎn)分別為,

可得,解得,故所求橢圓的標(biāo)準(zhǔn)方程為

(2)由,可知的斜率存在且不為

設(shè)直線(xiàn)①,則②.

將①代入橢圓方程并整理,得,可得,則

同理,可得,

由直線(xiàn)方程的兩點(diǎn)式,得直線(xiàn)的方程為,即直線(xiàn)過(guò)定點(diǎn),該定點(diǎn)的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,2Sn+2nan+12,a28,其中nN*.

1)記bnan+1,求證:{bn}是等比數(shù)列;

2)設(shè)為數(shù)列{cn}的前n項(xiàng)和,若不等式kTn對(duì)任意的nN*恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某健身館在20197、8兩月推出優(yōu)惠項(xiàng)目吸引了一批客戶(hù).為預(yù)估20207、8兩月客戶(hù)投入的健身消費(fèi)金額,健身館隨機(jī)抽樣統(tǒng)計(jì)了20197、8兩月100名客戶(hù)的消費(fèi)金額,分組如下:(單位:元),得到如圖所示的頻率分布直方圖:

1)若把20197、8兩月健身消費(fèi)金額不低于800元的客戶(hù),稱(chēng)為健身達(dá)人,經(jīng)數(shù)據(jù) 處理,現(xiàn)在列聯(lián)表中得到一定的相關(guān)數(shù)據(jù),請(qǐng)補(bǔ)全空格處的數(shù)據(jù),并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為健身達(dá)人與性別有關(guān)?

健身達(dá)人

非健身達(dá)人

總計(jì)

10

30

總計(jì)

2)為吸引顧客,在健身項(xiàng)目之外,該健身館特別推出健身配套營(yíng)養(yǎng)品的銷(xiāo)售,現(xiàn)有兩種促銷(xiāo)方案.

方案一:每滿(mǎn)800元可立減100元;

方案二:金額超過(guò)800元可抽獎(jiǎng)三次,每次中獎(jiǎng)的概率為,且每次抽獎(jiǎng)互不影響,中獎(jiǎng)1次打9折,中獎(jiǎng)2次打8折,中獎(jiǎng)3次打7.

若某人打算購(gòu)買(mǎi)1000元的營(yíng)養(yǎng)品,請(qǐng)從實(shí)際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.

3)在(2)中的方案二中,金額超過(guò)800元可抽獎(jiǎng)三次,假設(shè)三次中獎(jiǎng)結(jié)果互不影響,且三次中獎(jiǎng)的概率為,記為銳角的內(nèi)角,

求證:

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)已知函數(shù)的兩個(gè)零點(diǎn)為

(1)求實(shí)數(shù)m的取值范圍;

(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn)的雙曲線(xiàn)C的漸近線(xiàn)方程為y2x,且該雙曲線(xiàn)過(guò)點(diǎn)(2,2).

1)求雙曲線(xiàn)C的標(biāo)準(zhǔn)方程;

2)點(diǎn)A為雙曲線(xiàn)C上任一點(diǎn),F1F2分別為雙曲線(xiàn)的左右焦點(diǎn),過(guò)其中的一個(gè)焦點(diǎn)作∠F1AF2的角平分線(xiàn)的垂線(xiàn),垂足為點(diǎn)P,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,城市缺水問(wèn)題尤為突出,某市為了鼓勵(lì)居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個(gè)合理的居民月用水量標(biāo)準(zhǔn):(單位:噸),用水量不超過(guò)的部分按平價(jià)收費(fèi),超過(guò)的部分按議價(jià)收費(fèi),為了了解全市市民用用水量分布情況,通過(guò)袖樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照,……分成9組,制成了如圖所示的頻率分布直方圖.

1)求頻率分布直方圖中的值,并估計(jì)該市市民月用水量的中位數(shù);

2)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)(噸),估計(jì)的值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的焦點(diǎn)為F,直線(xiàn)與拋物線(xiàn)C相切于點(diǎn)P,過(guò)點(diǎn)P作拋物線(xiàn)C的割線(xiàn)PQ,割線(xiàn)PQ與拋物線(xiàn)C的另一交點(diǎn)為Q,APQ的中點(diǎn).過(guò)Ay軸的垂線(xiàn)與y軸交于點(diǎn)H,與直線(xiàn)l相交于點(diǎn)N,M為線(xiàn)段AN的中點(diǎn).

1)求拋物線(xiàn)C的方程;

2)在x軸上是否存在一點(diǎn)T,使得當(dāng)割線(xiàn)PQ變化時(shí),總有為定值?若存在,求出該點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年,南昌市召開(kāi)了全球VR產(chǎn)業(yè)大會(huì),為了增強(qiáng)對(duì)青少年VR知識(shí)的普及,某中學(xué)舉行了一次普及VR知識(shí)講座,并從參加講座的男生中隨機(jī)抽取了50人,女生中隨機(jī)抽取了70人參加VR知識(shí)測(cè)試,成績(jī)分成優(yōu)秀和非優(yōu)秀兩類(lèi),統(tǒng)計(jì)兩類(lèi)成績(jī)?nèi)藬?shù)得到如下的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計(jì)

男生

a

35

50

女生

30

d

70

總計(jì)

45

75

120

(1)確定a,d的值;

(2)試判斷能否有90%的把握認(rèn)為VR知識(shí)的測(cè)試成績(jī)優(yōu)秀與否與性別有關(guān);

(3)為了宣傳普及VR知識(shí),從該校測(cè)試成績(jī)獲得優(yōu)秀的同學(xué)中按性別采用分層抽樣的方法,隨機(jī)選出6名組成宣傳普及小組.現(xiàn)從這6人中隨機(jī)抽取2名到校外宣傳,求“到校外宣傳的2名同學(xué)中至少有1名是男生”的概率.

附:

P(K2≥k0)

0.25

0.15

0.10

0.05

0.025

0.010

k0

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在直角梯形ABCD中,,,,,EAD的中點(diǎn),OACBE的交點(diǎn).沿BE折起到圖2的位置,得到四棱錐.

1)證明:平面;

2)若平面平面,求平面與平面夾角(銳角)的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案