【題目】甲乙兩人進(jìn)行跳棋比賽,約定每局勝者得1分,負(fù)者得0分.若其中的一方比對(duì)方多得2分或下滿5局時(shí)停止比賽.設(shè)甲在每局中獲勝的概率為,乙在每局中獲勝的概率為,且各局勝負(fù)相互獨(dú)立.

(1)求沒(méi)下滿5局甲就獲勝的概率;

(2)設(shè)比賽結(jié)束時(shí)已下局?jǐn)?shù)為,求的分布列及數(shù)學(xué)期望.

【答案】(1);(2)答案見(jiàn)解析.

【解析】試題分析:

(1)沒(méi)下滿局甲就獲勝有兩種情況:①兩局后甲獲勝,此時(shí)②四局后甲獲勝,此時(shí),則滿足題意的概率值為

(2)由題意知的所有取值為,,,據(jù)此可得的分布列,計(jì)算其數(shù)學(xué)期望為

試題解析:

(1)沒(méi)下滿局甲就獲勝有兩種情況:

①兩局后甲獲勝,此時(shí),

②四局后甲獲勝,此時(shí),

所以,沒(méi)下滿5局甲就獲勝的概率

(2)由題意知的所有取值為

,

的分布列為:

2

4

5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有黑掃黑、無(wú)黑除惡、無(wú)惡治亂,維護(hù)社會(huì)穩(wěn)定和和平發(fā)展.掃黑除惡期間,大量違法分子主動(dòng)投案,某市公安機(jī)關(guān)對(duì)某月連續(xù)7天主動(dòng)投案的人員進(jìn)行了統(tǒng)計(jì),表示第天主動(dòng)投案的人數(shù),得到統(tǒng)計(jì)表格如下:

1

2

3

4

5

6

7

3

4

5

5

5

6

7

1)若具有線性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

2)判定變量之間是正相關(guān)還是負(fù)相關(guān).(寫(xiě)出正確答案,不用說(shuō)明理由)

3)預(yù)測(cè)第八天的主動(dòng)投案的人數(shù)(按四舍五入取到整數(shù)).

參考公式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著智能手機(jī)的普及,使用手機(jī)上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費(fèi)者對(duì)手機(jī)流量的需求越來(lái)越大.長(zhǎng)沙某通信公司為了更好地滿足消費(fèi)者對(duì)流量的需求,準(zhǔn)備推出一款流量包.該通信公司選了5個(gè)城市(總?cè)藬?shù)、經(jīng)濟(jì)發(fā)展情況、消費(fèi)能力等方面比較接近)采用不同的定價(jià)方案作為試點(diǎn),經(jīng)過(guò)一個(gè)月的統(tǒng)計(jì),發(fā)現(xiàn)該流量包的定價(jià):(單位:元/月)和購(gòu)買(mǎi)人數(shù)(單位:萬(wàn)人)的關(guān)系如表:

(1)根據(jù)表中的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(2)若該通信公司在一個(gè)類(lèi)似于試點(diǎn)的城市中將這款流量包的價(jià)格定位25元/ 月,請(qǐng)用所求回歸方程預(yù)測(cè)長(zhǎng)沙市一個(gè)月內(nèi)購(gòu)買(mǎi)該流量包的人數(shù)能否超過(guò)20 萬(wàn)人.

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形.

(1)求出f(5)的值;

(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式;

(3)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列結(jié)論:

①若為真命題,則、均為真命題;

②命題“若,則”的逆否命題是“若,則”;

③若命題,則;

④“”是“”的充分不必要條件.其中正確的結(jié)論有____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)(其中)的部分圖象如圖所示,把函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位,得到函數(shù)的圖像.

1)當(dāng)時(shí),求的值域

2)令,若對(duì)任意都有恒成立,求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)=lnx+ax2+(2a+1)x

(1)討論的單調(diào)性;

(2)當(dāng)a﹤0時(shí),證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三角形的勃?jiǎng)诳ǖ曼c(diǎn)是以法國(guó)軍官亨利·勃?jiǎng)诳ǖ拢?/span>Henri.Brocard)命名的,他在1875年曾描述過(guò)這一事實(shí),即:對(duì)任何一個(gè)三角形都存在唯一的角,即勃?jiǎng)诳ǖ陆牵沟脠D中連接三個(gè)頂點(diǎn)的線相交于勃?jiǎng)诳ǖ曼c(diǎn)Q,如圖所示.

1)研究發(fā)現(xiàn):等腰直角三角形中,若是斜邊的等腰直角三角形,求線段的長(zhǎng)度;

2)若中,,,,求的值;

3)若中,若線段,,的長(zhǎng)度是1為首項(xiàng),公比為q)的等比數(shù)列,當(dāng)時(shí),求公比q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的中心為O,四邊形OBEF為矩形,平面OBEF⊥平面ABCD,點(diǎn)GAB的中點(diǎn),AB=BE=2.

)求證:EG∥平面ADF;

)求二面角OEFC的正弦值;

)設(shè)H為線段AF上的點(diǎn),且AH=HF,求直線BH和平面CEF所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案