【題目】設f(x)=alnx+ + x+1,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線垂直于y軸.
(1)求a的值;
(2)求函數(shù)f(x)的極值.

【答案】
(1)

解:求導函數(shù)可得

∵曲線y=f(x)在點(1,f(1))處的切線垂直于y軸.

∴f′(1)=0,∴

∴a=﹣1;


(2)

解:由(1)知, (x>0)

=

令f′(x)=0,可得x=1或x= (舍去)

∵0<x<1時,f′(x)<0,函數(shù)遞減;x>1時,f′(x)>0,函數(shù)遞增

∴x=1時,函數(shù)f(x)取得極小值為3


【解析】(1) 求導函數(shù),利用曲線y=f(x)在點(1,f(1))處的切線垂直于y軸,可得f′(1)=0,從而可求a的值;(2) 由(1)知, (x>0), = ,確定函數(shù)的單調性,即可求得函數(shù)f(x)的極值.
【考點精析】利用函數(shù)的極值與導數(shù)對題目進行判斷即可得到答案,需要熟知求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】“冰桶挑戰(zhàn)賽”是一項社交網(wǎng)絡上發(fā)起的慈善公益活動,活動規(guī)定:被邀請者要么在24小時內接受挑戰(zhàn),要么選擇為慈善機構捐款(不接受挑戰(zhàn)),并且不能重復參加該活動.若被邀請者接受挑戰(zhàn),則他需在網(wǎng)絡上發(fā)布自己被冰水澆遍全身的視頻內容,然后便可以邀請另外3個人參與這項活動.假設每個人接受挑戰(zhàn)和不接受挑戰(zhàn)是等可能的,且互不影響.

(1)若某參與者接受挑戰(zhàn)后,對其他3個人發(fā)出邀請,則這3個人中至少有2個人接受挑戰(zhàn)的概率是多少?

(2)為了解冰桶挑戰(zhàn)賽與受邀者的性別是否有關,某調查機構進行了隨機抽樣調查,調查得到如下列聯(lián)表:

性別 成績

接受挑戰(zhàn)

不接受挑戰(zhàn)

總計

男性

45

15

60

女性

25

15

40

總計

70

30

100

根據(jù)表中數(shù)據(jù),能有有90%的把握認為“冰桶挑戰(zhàn)賽與受邀者的性別有關”?

附:,其中.

2.706

3.841

6.635

10.828

0.10

0.05

0.010

0.001

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C經(jīng)過P(4,-2),Q(13)兩點,且圓心C在直線xy10上.

(1)求圓C的方程;

(2)若直線lPQ,且l與圓C交于點A,B且以線段AB為直徑的圓經(jīng)過坐標原點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校數(shù)學系計劃在周六和周日各舉行一次主題不同的心理測試活動,分別由李老師和張老師負責,已知該系共有n位學生,每次活動均需該系k位學生參加(n和k都是固定的正整數(shù)),假設李老師和張老師分別將各自活動通知的信息獨立、隨機地發(fā)給該系k位學生,且所發(fā)信息都能收到,記該系收到李老師或張老師所發(fā)活動通知信息的學生人數(shù)為X.
(1)求該系學生甲收到李老師或張老師所發(fā)活動通知信息的概率;
(2)求使P(X=m)取得最大值的整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)求函數(shù)的單調區(qū)間;

(Ⅱ)當時,,成立,求的取值范圍;

(Ⅲ)設曲線,點,為該曲線上不同的兩點.求證:當時,直線的斜率大于-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設有直線和平面,則下列四個命題中,正確的是( )

A. mα,nα,則mnB. mα,nα,mβ,lβ,則αβ

C. αβmα,則mβD. αβ,mβmα,則mα

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

(1)求函數(shù)的最小正周期和對稱軸方程;

(2)若,求的值域.

【答案】(1)對稱軸為,最小正周期;(2)

【解析】

(1)利用正余弦的二倍角公式和輔助角公式將函數(shù)解析式進行化簡得到,由周期公式和對稱軸公式可得答案;(2)由x的范圍得到,由正弦函數(shù)的性質即可得到值域.

(1)

,則

的對稱軸為,最小正周期;

(2)當時,,

因為單調遞增,在單調遞減,

取最大值,在取最小值,

所以,

所以

【點睛】

本題考查正弦函數(shù)圖像的性質,考查周期性,對稱性,函數(shù)值域的求法,考查二倍角公式以及輔助角公式的應用,屬于基礎題.

型】解答
束】
21

【題目】已知等比數(shù)列的前項和為,公比,

(1)求等比數(shù)列的通項公式;

(2)設,求的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某村電費收取有以下兩種方案供農(nóng)戶選擇:

方案一:每戶每月收取管理費2元,月用電量不超過30度時,每度0.5元;超過30度時,超過部分按每度0.6元收;

方案二:不收管理費,每度0.58元.

1)求方案一收費(元)與用電量(度)間的函數(shù)關系;

2)老王家九月份按方案一交費35元,問老王家該月用電多少度?

3)老王家該月用電量在什么范圍內,選擇方案一比選擇方案二更好?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2﹣(2m+3x+m2+20

1)若方程有實數(shù)根,求實數(shù)m的取值范圍;

2)若方程兩實數(shù)根分別為x1、x2,且滿足x12+x2231+|x1x2|,求實數(shù)m的值.

查看答案和解析>>

同步練習冊答案