【題目】已知橢圓的左焦點為F,短軸的兩個端點分別為A,B,且,為等邊三角形.
(1)求橢圓C的方程;
(2)如圖,點M在橢圓C上且位于第一象限內(nèi),它關(guān)于坐標(biāo)原點O的對稱點為N;過點M作x軸的垂線,垂足為H,直線與橢圓C交于另一點J,若,試求以線段為直徑的圓的方程;
(3)已知是過點A的兩條互相垂直的直線,直線與圓相交于P,Q兩點,直線與橢圓C交于另一點R,求面積最大值時,直線的方程.
【答案】(1)(2)(3)
【解析】
(1)由題意可得,,由,,的關(guān)系,可得的值,進(jìn)而得橢圓方程;
(2)設(shè),即有,,,運用向量的數(shù)量積的坐標(biāo)表示,可得,,求出的方程,代入橢圓方程,可得的坐標(biāo),求得的中點坐標(biāo)和半徑,進(jìn)而可得圓的方程;
(3)設(shè),代入橢圓方程可得,運用韋達(dá)定理和弦長公式,再由三角形的面積公式,運用配方和二次函數(shù)的最值得求法,即可得到所求直線的方程.
(1)由題意可得,即,又為等邊三角形,可得,
所以,
所以,橢圓的方程為:.
(2)設(shè),即有,,,
由題意得,,即為,解得,
代入橢圓方程可得,,解得,即有,,
所以直線方程為:,將其代入橢圓方程得:,
由,解得點坐標(biāo)為,則中點為,
所以圓的半徑為,
即以線段為直徑的圓的方程為:.
(3)設(shè),代入橢圓方程可得,,
解得,,則,
由題意可得直線的方程為,代入圓的方程中,
由弦長公式可得,
則的面積為
令,即有,
所以
所以當(dāng),即有,此時,有最大值,
即有直線的方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),且(其中e是自然對數(shù)的底數(shù)).
(Ⅰ)若,求的單調(diào)區(qū)間;
(Ⅱ)若,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在2019年女排世界杯中,中國女子排球隊以11連勝的優(yōu)異戰(zhàn)績成功奪冠,為祖國母親七十華誕獻(xiàn)上了一份厚禮.排球比賽采用5局3勝制,前4局比賽采用25分制,每個隊只有贏得至少25分,并同時超過對方2分時,才勝1局;在決勝局(第五局)采用15分制,每個隊只有贏得至少15分,并領(lǐng)先對方2分為勝.在每局比賽中,發(fā)球方贏得此球后可得1分,并獲得下一球的發(fā)球權(quán),否則交換發(fā)球權(quán),并且對方得1分.現(xiàn)有甲乙兩隊進(jìn)行排球比賽:
(1)若前三局比賽中甲已經(jīng)贏兩局,乙贏一局.接下來兩隊贏得每局比賽的概率均為,求甲隊最后贏得整場比賽的概率;
(2)若前四局比賽中甲、乙兩隊已經(jīng)各贏兩局比賽.在決勝局(第五局)中,兩隊當(dāng)前的得分為甲、乙各14分,且甲已獲得下一發(fā)球權(quán).若甲發(fā)球時甲贏1分的概率為,乙發(fā)球時甲贏1分的概率為,得分者獲得下一個球的發(fā)球權(quán).設(shè)兩隊打了個球后甲贏得整場比賽,求x的取值及相應(yīng)的概率p(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱中,底面為菱形,且側(cè)棱 其中為的交點.
(1)求點到平面的距離;
(2)在線段上,是否存在一個點,使得直線與垂直?若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知非空集合是由一些函數(shù)組成,滿足如下性質(zhì):①對任意,均存在反函數(shù),且;②對任意,方程均有解;③對任意、,若函數(shù)為定義在上的一次函數(shù),則.
(1)若,,均在集合中,求證:函數(shù);
(2)若函數(shù)()在集合中,求實數(shù)的取值范圍;
(3)若集合中的函數(shù)均為定義在上的一次函數(shù),求證:存在一個實數(shù),使得對一切,均有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50 m/min.在甲出發(fā)2 min后,乙從A乘纜車到B,在B處停留1 min后,再從B勻速步行到C.假設(shè)纜車勻速直線運行的速度為130 m/min,山路AC長為1260 m,經(jīng)測量,cos A=,cos C=
(1)求索道AB的長;
(2)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個不相等的非零向量,兩組向量和均由2個和3個排列而成,記,表示所有可能取值中的最小值,則下列命題中
(1)有5個不同的值;(2)若則與無關(guān);(3)若,則與無關(guān);(4)若,則;(5)若,,則與的夾角為.正確的是( 。
A.(1)(2)B.(2)(4)C.(3)(5)D.(1)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+|x﹣a|.
(1)當(dāng)a=1時,求函數(shù)f(x)的最小值;
(2)試討論函數(shù)f(x)的奇偶性,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時,記在區(qū)間的最大值為,最小值為,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com