【題目】的展開(kāi)式中,的系數(shù)是( )

A. -160 B. -120 C. 40 D. 200

【答案】B

【解析】

將問(wèn)題轉(zhuǎn)化為二項(xiàng)式(1﹣2x5的展開(kāi)式的系數(shù)問(wèn)題,求出(1﹣2x5展開(kāi)式的通項(xiàng),分別令r=2,3求出(1﹣2x5(2+x)的展開(kāi)式中x3項(xiàng)的系數(shù).

(1﹣2x5(2+x)的展開(kāi)式中x3項(xiàng)的系數(shù)是(1﹣2x5展開(kāi)式中x3項(xiàng)的系數(shù)的2倍與(1﹣2x5展開(kāi)式中x2項(xiàng)的系數(shù)的和

∵(1﹣2x5展開(kāi)式的通項(xiàng)為Tr+1=(﹣2)rC5rxr

r=3得到x3項(xiàng)的系數(shù)為﹣8C53=﹣80

r=2得到x2項(xiàng)的系數(shù)為4C52=40

所以(1﹣2x5(2+x)的展開(kāi)式中x3項(xiàng)的系數(shù)是﹣80×2+40=﹣120

故答案為:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)直線上的點(diǎn)作橢圓的切線,切點(diǎn)分別為,聯(lián)結(jié)

(1)當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),證明直線恒過(guò)定點(diǎn);

(2)當(dāng)時(shí),定點(diǎn)平分線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將參加夏令營(yíng)的400名學(xué)生編號(hào)為:001,002,…,400,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為40的樣本,且隨機(jī)抽得的號(hào)碼為003,這400名學(xué)生分住在三個(gè)營(yíng)區(qū),從001到180在第一營(yíng)區(qū),從181到295在第二營(yíng)區(qū),從296到400在第三營(yíng)區(qū),三個(gè)營(yíng)區(qū)被抽中的人數(shù)分別為( )

A. 18,12,10 B. 20,12,8 C. 17,13,10 D. 18,11,11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)實(shí)數(shù)滿(mǎn)足,若的最大值為16,則實(shí)數(shù)__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,離心率為,過(guò)右焦點(diǎn)作直線交橢圓兩點(diǎn),的周長(zhǎng)為,點(diǎn).

1)求橢圓的方程;

2)設(shè)直線、的斜率,請(qǐng)問(wèn)是否為定值?若是定值,求出其定值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),離心率為,為坐標(biāo)原點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè),,為橢圓上的三點(diǎn),交于點(diǎn),且,當(dāng)的中點(diǎn)恰為點(diǎn)時(shí),判斷的面積是否為常數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖.

1)計(jì)算甲班的樣本方差;

2)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為F1,F2,過(guò)點(diǎn)F1的直線與C交于AB兩點(diǎn).ABF2的周長(zhǎng)為,且橢圓的離心率為.

1)求橢圓C的標(biāo)準(zhǔn)方程:

2)設(shè)點(diǎn)P為橢圓C的下頂點(diǎn),直線PA,PBy2分別交于點(diǎn)M,N,當(dāng)|MN|最小時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為中心,以坐標(biāo)軸為對(duì)稱(chēng)軸的幫圓C經(jīng)過(guò)點(diǎn)M(2,1),N.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)經(jīng)過(guò)點(diǎn)M作傾斜角互補(bǔ)的兩條直線,分別與橢圓C相交于異于M點(diǎn)的A,B兩點(diǎn),當(dāng)△AMB面積取得最大值時(shí),求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案