【題目】一臺機器由于使用時間較長,生產(chǎn)的零件有一些缺損,按不同轉(zhuǎn)速生產(chǎn)出來的零件有缺損的統(tǒng)計數(shù)據(jù)如下表所示.
轉(zhuǎn)速x(轉(zhuǎn)/秒) | 16 | 14 | 12 | 8 |
每小時生產(chǎn)有缺損零件數(shù)y(個) | 11 | 9 | 8 | 5 |
(1)作出散點圖;
(2)如果y與x線性相關(guān),求出回歸直線方程;
(3)若實際生產(chǎn)中,允許每小時的產(chǎn)品中有缺損的零件最多為10個,那么機器的運轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?
【答案】
(1)解:作散點圖如圖所示.
(2)解:由散點圖可知y與x線性相關(guān),故可設(shè)回歸直線方程為 =bx+a.
可算得, =12.5, =8.25, , ,
∴ ,a= -b ≈8.25-0.73×12.5=-0.875.
∴所求回歸直線方程為 =0.73x-0.875
(3)解:令 =10,得0.73x-0.875=10,解得x≈15.
即機器的運轉(zhuǎn)速度應(yīng)控制在15轉(zhuǎn)/秒內(nèi)
【解析】(1)根據(jù)題目給出的數(shù)據(jù)可以作出散點圖。
(2)由散點圖可知y與x線性相關(guān),通過設(shè)回歸直線方程,由回歸直線方程計算公式可以求出方程。
(3)通過令=10,將其代入方程,可以解出x的值。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,在直角梯形 中, , , , , , .將 沿 折起,使得點 在平面 的正投影 恰好落在 邊上,得到幾何體 ,如圖2所示.
(1)求證: ;
(2)求點 到平面 的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的箱子里裝有5個完全相同的小球,球上分別標有數(shù)字1、2、3、4、5.甲先從箱子中摸出一個小球,記下球上所標數(shù)字后,將該小球放回箱子中搖勻后,乙再從該箱子中摸出一個小球.
(1)若甲、乙兩人誰摸出的球上標的數(shù)字大誰就獲勝(數(shù)字相同為平局),求甲獲勝的概率;
(2)規(guī)定:兩人摸到的球上所標數(shù)字之和小于6,則甲獲勝,否則乙獲勝,這樣規(guī)定公平嗎?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是圓柱的母線, 是 的直徑, 是底面圓周上異于 的任意一點, , .
(1)求證:
(2)當三棱錐 的體積最大時,求 與平面 所成角的大;
(3) 上是否存在一點 ,使二面角 的平面角為45°?若存在,求出此時 的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校在校學(xué)生2 000人,為了學(xué)生的“德、智、體”全面發(fā)展,學(xué)校舉行了跑步和登山比賽活動,每人都參加而且只參與其中一項比賽,各年級參與比賽的人數(shù)情況如下表:
高一年級 | 高二年級 | 高三年級 | |
跑步人數(shù) | a | b | c |
登山人數(shù) | x | y | z |
其中a∶b∶c=2∶5∶3,全校參與登山的人數(shù)占總?cè)藬?shù)的 .為了了解學(xué)生對本次活動的滿意程度,從中抽取一個200人的樣本進行調(diào)查,則高三年級參與跑步的學(xué)生中應(yīng)抽取( )
A.15人
B.30人
C.40人
D.45人
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知指數(shù)函數(shù)y=f(x)、對數(shù)函數(shù)y=g(x)和冪函數(shù)y=h(x)的圖象都經(jīng)過點P( ),如果f(x1)=g(x2)=h(x3)=4,那么x1+x2+x3=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知c>0,且c≠1,設(shè)p:函數(shù)y=cx在R上單調(diào)遞減;q:函數(shù)f(x)=x2﹣2cx+1在( ,+∞)上為增函數(shù),若“p且q”為假,“p或q”為真,求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是R上的奇函數(shù),且當x>0時,f(x)=-2x2+4x+3.
(1)求f(x)的表達式;
(2)畫出f(x)的圖象,并指出f(x)的單調(diào)區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com