給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=|x-{x}|的四個(gè)命題:
①函數(shù)y=f(x)的定義域是R,值域是[0,
1
2
];
②函數(shù)y=f(x)的圖象關(guān)于直線x=
k
2
(k∈Z)對(duì)稱;
③函數(shù)y=f(x)是周期函數(shù),最小正周期是1;
則其中真命題是
①②③
①②③
分析:定義域顯然為R,然后根據(jù)題設(shè)x≤m+
1
2
,{x}=m,則f(x)=x-{x}≤
1
2
;
f(k-x)=|(k-x)-{k-x}|=|(-x)-{-x}|=f(-x),所以關(guān)于x=x=
k
2
(k∈Z)對(duì)稱;
f(x+1)=|(x+1)-{x+1}|=|x-{x}|=f(x),所以周期為1.
解答:解:①定義域顯然為R,然后根據(jù)題設(shè)x≤m+
1
2
,{x}=m,
則f(x)=x-{x}≤
1
2
,故①成立;
②f(k-x)=|(k-x)-{k-x}|=|(-x)-{-x}|=f(-x),
所以關(guān)于x=
k
2
(k∈Z)對(duì)稱,故②成立;
③f(x+1)=|(x+1)-{x+1}|=|x-{x}|=f(x),
所以周期為1,故③成立.
故答案為:①②③.
點(diǎn)評(píng):本題考查函數(shù)的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意函數(shù)的定義域、值域、對(duì)稱性和周期性的求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的四個(gè)命題:
①y=f(x)的定義域是R,值域是(-
1
2
,
1
2
];
②點(diǎn)(k,0)(k∈Z)是y=f(x)的圖象的對(duì)稱中心;
③函數(shù)y=f(x)的最小正周期為1;
④函數(shù)y=f(x)在(-
1
2
,
3
2
]上是增函數(shù);
則其中真命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x},即{x}=m,在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的四個(gè)命題:
①y=f(x)的定義域是R,值域是(-
1
2
,
1
2
];
②點(diǎn)(k,0)(k∈Z)是y=f(x)的圖象的對(duì)稱中心;
③函數(shù)y=f(x)在(-
1
2
,
3
2
]上是增函數(shù);
④函數(shù)y=f(x)的最小正周期為1;
則其中真命題是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•門頭溝區(qū)一模)給出定義:若m-
1
2
≤x<m+
1
2
(其中m為整數(shù)),則m叫離實(shí)數(shù)x最近的整數(shù),記作[x]=m,已知f(x)=|[x]-x|,下列四個(gè)命題:
①函數(shù)f(x)的定義域?yàn)镽,值域?yàn)?span id="54stfst" class="MathJye">[0,
1
2
]; ②函數(shù)f(x)是R上的增函數(shù);
③函數(shù)f(x)是周期函數(shù),最小正周期為1;  ④函數(shù)f(x)是偶函數(shù),
其中正確的命題的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•昌平區(qū)二模)給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x}=m,在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的四個(gè)命題:
①函數(shù)y=f(x)的定義域?yàn)镽,最大值是
1
2
;②函數(shù)y=f(x)在[0,1]上是增函數(shù);
③函數(shù)y=f(x)是周期函數(shù),最小正周期為1;④函數(shù)y=f(x)的圖象的對(duì)稱中心是(0,0).
其中正確命題的序號(hào)是
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
(m∈Z),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x},即{x}=m;在此基礎(chǔ)上有函數(shù)f(x)=|x-{x}|(x∈R).對(duì)于函數(shù)f(x)給出如下判斷:①函數(shù)f(x)是偶函數(shù);②函數(shù)f(x)是周期函數(shù);③函數(shù)f(x)在區(qū)間(-
1
2
1
2
]
上單調(diào)遞增;④函數(shù)f(x)的圖象關(guān)于直線x=k+
1
2
(k∈Z)對(duì)稱.則以上判斷中正確結(jié)論的個(gè)數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案