13 |
4 |
5 |
2 |
1 |
k1k2 |
1 |
k2k3 |
1 |
kn-1kn |
1 |
k1k2 |
1 |
k2k3 |
1 |
kn-1kn |
5 |
2 |
3 |
2 |
13 |
4 |
5 |
4 |
3 |
2 |
5 |
4 |
2n+3 |
2 |
12n+5 |
4 |
1 |
kn-1kn |
1 |
(2n+1)(2n+3) |
1 |
2 |
1 |
(2n+1) |
1 |
(2n+3) |
1 |
k1k2 |
1 |
k2k3 |
1 |
kn-1kn |
1 |
2 |
1 |
5 |
1 |
7 |
1 |
7 |
1 |
9 |
1 |
2n+1 |
1 |
2n+3 |
1 |
2 |
1 |
5 |
1 |
2n+3 |
1 |
10 |
1 |
4n+6 |
248 |
9 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年聊城市四模理) (14分) 在直角坐標(biāo)平面上有一點(diǎn)列位于直線上,且Pn的橫坐標(biāo)構(gòu)成以為首項,-1為公差的等差數(shù)列{xn}.
(1)求點(diǎn)Pn的坐標(biāo);
(2)設(shè)拋物線列C1,C2,…,Cn,…中的每一條的對稱軸都垂直于x軸,第n條拋物線Cn的頂點(diǎn)為Pn,且經(jīng)過點(diǎn)Dn(0,n2+1). 記與拋物線Cn相切于點(diǎn)Dn的直線的斜率為kn,求證:;
(3)設(shè),等差數(shù)列{an}的任意一項,其中a1是S∩T中的最大數(shù),且-256<a10<-125,求數(shù)列{an}通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆江蘇省蘇州市紅心中學(xué)高三摸底考試數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)在直角坐標(biāo)平面上有一點(diǎn)列 對一切正整數(shù)n,點(diǎn)Pn在函數(shù)的圖象上,且Pn的橫坐標(biāo)構(gòu)成以為首項,-1為公差的等差數(shù)列{xn}.
(1)求點(diǎn)Pn的坐標(biāo);
(2)設(shè)拋物線列C1,C2,C3,…,Cn,…中的每一條的對稱軸都垂直于x軸,拋物線Cn的頂點(diǎn)為Pn,且過點(diǎn)Dn(0,).記與拋物線Cn相切于點(diǎn)Dn的直線的斜率為kn,求
(3)設(shè)等差數(shù)列的任一項,其中是中的最大數(shù),,求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省蘇州市高三摸底考試數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)在直角坐標(biāo)平面上有一點(diǎn)列 對一切正整數(shù)n,點(diǎn)Pn在函數(shù)的圖象上,且Pn的橫坐標(biāo)構(gòu)成以為首項,-1為公差的等差數(shù)列{xn}.
(1)求點(diǎn)Pn的坐標(biāo);
(2)設(shè)拋物線列C1,C2,C3,…,Cn,…中的每一條的對稱軸都垂直于x軸,拋物線Cn的頂點(diǎn)為Pn,且過點(diǎn)Dn(0,).記與拋物線Cn相切于點(diǎn)Dn的直線的斜率為kn,求
(3)設(shè)等差數(shù)列的任一項,其中是中的最大數(shù),,求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009-2010集寧一中學(xué)高三年級理科數(shù)學(xué)第一學(xué)期期末考試試題 題型:解答題
在直角坐標(biāo)平面上有一點(diǎn)列,對一切正整數(shù),點(diǎn)位于函數(shù)的圖象上,且的橫坐標(biāo)構(gòu)成以為首項,為公差的等差數(shù)列。
⑴求點(diǎn)的坐標(biāo);
⑵設(shè)拋物線列中的每一條的對稱軸都垂直于軸,第條拋物線的頂點(diǎn)為,且過點(diǎn),記與數(shù)列相切于的直線的斜率為,求:。
⑶設(shè),等差數(shù)列的任一項,其中是中的最大數(shù),,求的通項公式。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com