【題目】如圖,某小區(qū)擬在空地上建一個(gè)占地面積為2400平方米的矩形休閑廣場,按照設(shè)計(jì)要求,休閑廣場中間有兩個(gè)完全相同的矩形綠化區(qū)域,周邊及綠化區(qū)域之間是道路(圖中陰影部分),道路的寬度均為2米.怎樣設(shè)計(jì)矩形休閑廣場的長和寬,才能使綠化區(qū)域的總面積最大?并求出其最大面積.
【答案】當(dāng)休閑廣場的長為米,寬為米時(shí),綠化區(qū)域總面積最大值,最大面積為平方米.
【解析】試題分析:設(shè)矩形休閑廣場的長為x米,根據(jù)占地面積表示出寬,結(jié)合道路的寬度均為2米,求出綠化區(qū)域的面積表達(dá)式,結(jié)合基本不等式可得答案
試題解析:設(shè)矩形休閑廣場的長為x米,依題意,其寬為米, 綠化區(qū)域的面積為
,
當(dāng)且僅當(dāng)即時(shí)取等號,此時(shí)
所以,當(dāng)矩形休閑廣場的長為60米和寬為40米時(shí),才能使綠化區(qū)域的總面積最大,最大面積為1944平方米
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)l,m是兩條不同的直線,α是一個(gè)平面,則下列命題正確的是( )
A. 若l⊥m,mα,則l⊥α
B. 若l⊥α,l∥m,則m⊥α
C. 若l∥α,mα,則l∥m
D. 若l∥α,m∥α,則l∥m
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為,其上下頂點(diǎn)分別為,點(diǎn).
(1)求橢圓的方程以及離心率;
(2)點(diǎn)的坐標(biāo)為,過點(diǎn)的任意作直線與橢圓相交于兩點(diǎn),設(shè)直線的斜率依次成等差數(shù)列,探究之間是否存在某種數(shù)量關(guān)系,若是請給出的關(guān)系式,并證明;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為矩形,直線平面,,,,點(diǎn)在棱上.
(1)求證:;
(2)若是的中點(diǎn),求異面直線與所成角的余弦值;
(3)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為(為參數(shù)),若以直角坐標(biāo)系的點(diǎn)為極點(diǎn),方向為極軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線的極坐標(biāo)方程為.
(1)求直線的傾斜角和曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于、兩點(diǎn),設(shè)點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列為等比數(shù)列,等差數(shù)列的前項(xiàng)和為,且滿足:
.
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè),求;
(3)設(shè),問是否存在正整數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: 經(jīng)過橢圓: 的左右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線,直線交橢圓于, 兩點(diǎn),且().
(1)求橢圓的方程;
(2)當(dāng)三角形的面積取得最大值時(shí),求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com