【題目】某同學(xué)理科成績優(yōu)異,今年參加了數(shù)學(xué),物理,化學(xué),生物4門學(xué)科競賽.已知該同學(xué)數(shù)學(xué)獲一等獎的概率為,物理,化學(xué),生物獲一等獎的概率都是,且四門學(xué)科是否獲一等獎相互獨(dú)立.

(1)求該同學(xué)至多有一門學(xué)科獲得一等獎的概率;

(2)用隨機(jī)變量表示該同學(xué)獲得一等獎的總數(shù),求的概率分布和數(shù)學(xué)期望

【答案】(1)(2)見解析

【解析】

(1)解:記“該同學(xué)獲得個一等獎”為事件,根據(jù)相互獨(dú)立時間的概率計(jì)算公式,即可求解;

(2)隨機(jī)變量的可能取值為,求得隨機(jī)變量取每個值的概率,得到隨機(jī)變量的分布列,利用公式求解數(shù)學(xué)期望即可.

(1)解:記該同學(xué)獲得個一等獎為事件,,

,

所以該同學(xué)至多有一門學(xué)科獲得一等獎的概率為

(2)隨機(jī)變量的可能取值為0,1,2,3,4,

,

,

,

所以的概率分布為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代儒家要求學(xué)生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”,某高中學(xué)校為弘揚(yáng)“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識競賽,現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐,規(guī)定:每場知識競賽前三名的得分都分別為;選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為分,乙和丙最后得分都是分,且乙在其中一場比賽中獲得第一名,下列說法正確的是( )

A. 乙有四場比賽獲得第三名

B. 每場比賽第一名得分

C. 甲可能有一場比賽獲得第二名

D. 丙可能有一場比賽獲得第一名

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),圓,過點(diǎn)的動直線與圓交于兩點(diǎn),線段的中點(diǎn)為,為坐標(biāo)原點(diǎn).

(Ⅰ)求的軌跡方程;

(Ⅱ)當(dāng)不重合)時,求的方程及的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,平行四邊形OABC,頂點(diǎn)O,A,C分別表示0,32i,-24i,試求:

(1) 所表示的復(fù)數(shù);

(2)對角線所表示的復(fù)數(shù);

(3)B點(diǎn)對應(yīng)的復(fù)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》第八章方程問題八:今有賣牛二、羊五,以買十三豕,有余錢一千。賣牛三、豕三,以買九羊,錢適足.賣羊六、豕八,以買五牛,錢不足六百.問牛、羊、豕各幾何?如果賣掉2頭牛和5只羊,可買13口豬,還余1000錢;賣掉3頭牛和3口豬的錢恰好可買9只羊;而賣掉6只羊和8口豬,去買5頭牛,還少600.問牛、羊、豬的價格各是多少”.按照題意,可解出牛______錢、羊______錢、豬______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年1月31日晚上月全食的過程分為初虧、食既、食甚、生光、復(fù)圓五個階段,月食的初虧發(fā)生在19時48分,20時51分食既,食甚時刻為21時31分,22時08分生光,直至23時12分復(fù)圓.全食伴隨有藍(lán)月亮和紅月亮,全食階段的“紅月亮”將在食甚時刻開始,生光時刻結(jié)東,一市民準(zhǔn)備在19:55至21:56之間的某個時刻欣賞月全食,則他等待“紅月亮”的時間不超過30分鐘的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的偶函數(shù),且時,均有,則滿足條件的可以是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).

(1)若直線與圓相交于,兩點(diǎn),求弦長,若點(diǎn),求的值;

(2)以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,圓和圓的交點(diǎn)為,求弦所在直線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

1)求頻率分布直方圖中的值;

2)估計(jì)該企業(yè)的職工對該部門評分不低于80的概率;

3)從評分在的受訪職工中,隨機(jī)抽取2人,求此2人評分都在的概率.

查看答案和解析>>

同步練習(xí)冊答案