【題目】某產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成個(gè)等級(jí),等級(jí)系數(shù)依次,其中為標(biāo)準(zhǔn),為標(biāo)準(zhǔn).已知甲廠執(zhí)行標(biāo)準(zhǔn)生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為元/件;乙廠執(zhí)行標(biāo)準(zhǔn)生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為元/件,假定甲、乙兩廠的產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn).
(1)已知甲廠產(chǎn)品的等級(jí)系數(shù)的概率分布如下所示:
且的數(shù)學(xué)期望,求的值;
(2)為分析乙廠產(chǎn)品的等級(jí)系數(shù),從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取件,相應(yīng)的等級(jí)系數(shù)組成一個(gè)樣本,數(shù)據(jù)如下:
用這個(gè)樣本的頻率分布估計(jì)總體分布,將頻率視為概率,求等級(jí)系數(shù)的數(shù)學(xué)期望;
(3)在(1)、(2)的條件下,若以“性?xún)r(jià)比”為判斷標(biāo)準(zhǔn),則哪個(gè)工廠的產(chǎn)品更具可購(gòu)買(mǎi)性?說(shuō)明理由.注:①產(chǎn)品的“性?xún)r(jià)比”;
②“性?xún)r(jià)比”大的產(chǎn)品更具可購(gòu)買(mǎi)性.
【答案】(1);(2);(3)乙廠的產(chǎn)品更具可購(gòu)買(mǎi)性.
【解析】
試題分析:(1)由概率分布列中概率之和為,以及期望列出方程組,解之即可;(2)由已知列出樣本的頻率分布表,再將頻率視為概率列出樣本的分布列,由期望公式計(jì)算即可;(3)分別計(jì)算甲廠新產(chǎn)品的性?xún)r(jià)比與乙廠新產(chǎn)品的性?xún)r(jià)比,比較大小即可.
試題解析:(1),即 ①
又由的概率分布列得 ②
由①②得
(2)由已知得,樣本的頻率分布表如下:
| ||||||
|
用這個(gè)樣本的頻率分布估計(jì)總體分布,將頻率視為概率,可得等級(jí)系數(shù)X2的概率分布列如下:
| ||||||
|
所以,
即乙廠產(chǎn)品的等級(jí)系數(shù)的數(shù)學(xué)期望等于4.8.
(3)乙廠的產(chǎn)品更具可購(gòu)買(mǎi)性,理由如下:
因?yàn)榧讖S產(chǎn)品的等級(jí)系數(shù)的數(shù)學(xué)期望等于,價(jià)格為元/件,所以其性?xún)r(jià)比為
因?yàn)橐覐S產(chǎn)品的等級(jí)系數(shù)的期望等于,價(jià)格為元/件,所以其性?xún)r(jià)比為
據(jù)此,乙廠的產(chǎn)品更具可購(gòu)買(mǎi)性。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且.
(Ⅰ)若是關(guān)于的方程的一個(gè)解,求的值;
(Ⅱ)當(dāng)且時(shí),解不等式;
(Ⅲ)若函數(shù)在區(qū)間上有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小組有3名男生和2名女生,從中任選2名學(xué)生參加演講比賽,那么下列對(duì)立的兩個(gè)事件是( )
A. “至少1名男生”與“至少有1名是女生”
B. 恰好有1名男生”與“恰好2名女生”
C. “至少1名男生”與“全是男生”
D. “至少1名男生”與“全是女生”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),,為常數(shù)
(1)用表示的最小值,求的解析式
(2)在(1)中,是否存在最小的整數(shù),使得對(duì)于任意均成立,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái)我國(guó)電子商務(wù)行業(yè)迎來(lái)發(fā)展的新機(jī)遇.2016年“618”期間,某購(gòu)物平臺(tái)的銷(xiāo)售業(yè)績(jī)高達(dá)516億元人民幣.與此同時(shí),相關(guān)管理部門(mén)推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系.現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.6,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.
(1)選完成關(guān)于商品和服務(wù)評(píng)價(jià)的列聯(lián)表,再判斷能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
(2)若將頻率視為概率,某人在該購(gòu)物平臺(tái)上進(jìn)行的3次購(gòu)物中,設(shè)對(duì)商品和服務(wù)全為好評(píng)的次數(shù)為隨機(jī)變量:
①求對(duì)商品和服務(wù)全為好評(píng)的次數(shù)的分布列;
②求的數(shù)學(xué)期望和方差.
附臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的觀測(cè)值:(其中)關(guān)于商品和服務(wù)評(píng)價(jià)的列聯(lián)表:
對(duì)服務(wù)好評(píng) | 對(duì)服務(wù)不滿(mǎn)意 | 合計(jì) | |
對(duì)商品好評(píng) | 80 | ||
對(duì)商品不滿(mǎn)意 | 10 | ||
合計(jì) | 200 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A,B,若A不是B的子集,則下列命題中正確的是( )
A.對(duì)任意的a∈A,都有aB
B.對(duì)任意的b∈B,都有bA
C.存在a0 , 滿(mǎn)足a0∈A,a0B
D.存在a0 , 滿(mǎn)足a0∈A,a0∈B
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某租賃公司擁有汽車(chē)100輛,當(dāng)每輛車(chē)的月租金為3000元時(shí),可全部租出;當(dāng)每輛車(chē)的月租金每增加50元時(shí),未租出的車(chē)將會(huì)增加一輛,租出的車(chē)每輛每月需要維護(hù)費(fèi)150元,未租出的車(chē)每輛每月需要維護(hù)費(fèi)50元.
(1)當(dāng)每輛車(chē)的月租金定為3600元時(shí),能租出多少輛車(chē)?
(2)當(dāng)每輛車(chē)的月租金為多少元時(shí),租賃公司的月收益最大?最大收益為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用系統(tǒng)抽樣法從160名學(xué)生中抽取容量為20的樣本,將160名學(xué)生從1~160編號(hào),按編號(hào)順序平均分成20組(1~8號(hào),9~16號(hào),。。。,153~160號(hào)).若第15組應(yīng)抽出的號(hào)碼為116,則第一組中用抽簽方法確定的號(hào)碼是( )
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若函數(shù)在處有極值,求函數(shù)的最大值;
(2)①是否存在實(shí)數(shù),使得關(guān)于的不等式在上恒成立?若存在,求出的取值范圍;若不存在,說(shuō)明理由;
②證明:不等式
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com