分析:(Ⅰ)由三棱柱ABC-A
1B
1C
1為正三棱柱,取BC邊的中點(diǎn)O,連結(jié)AO,可證AO垂直于底面,以O(shè)為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,由已知求出各點(diǎn)的坐標(biāo),得到向量
,,的坐標(biāo),由向量的數(shù)量積等于0可證AB
1⊥平面A
1BD;
(Ⅱ)把D點(diǎn)的坐標(biāo)用含有λ的代數(shù)式表示,求出二面角A-A
1D-B的兩個(gè)面的法向量,利用法向量所成的角為
即可得到λ的值.
解答:(Ⅰ)證明:取BC的中點(diǎn)為O,連結(jié)AO
在正三棱柱ABC-A
1B
1C
1中,面ABC⊥面CB
1,△ABC為正三角形,所以AO⊥BC,
故AO⊥平面CB
1.
以O(shè)為坐標(biāo)原點(diǎn)建立如圖空間直角坐標(biāo)系O-xyz.
則
A(0,0,),B
1(1,2,0),D(-1,1,0),
A1(0,2,),B(1,0,0).
所以
=(1,2,-),
=(1,1,),
=(2,-1,0),
因?yàn)?span id="ziesvfw" class="MathJye">
•
=1+2-3=0,
•
=2-2=0,
所以AB
1⊥DA
1,AB
1⊥DB,又DA
1∩DB=D,
所以AB
1⊥平面A
1BD;
(Ⅱ)解:由(1)得D(-1,2λ,0),所以
=(1,2-2λ,),
=(2,-2λ,0),
=(1,-2λ,),
設(shè)平面A
1BD的法向量
=(x,y,z),平面AA
1D的法向量
=(s,t,u),
由
,得
,取y=1,得x=λ,
z=.
所以平面A
1BD的一個(gè)法向量為
=(λ,1,),
由
,得
,取u=-1,得x=
,y=0.
所以平面AA
1D的一個(gè)法向量
=(,0,-1),
由
cos<,>==,得
=
.
解得
λ=,為所求.
點(diǎn)評(píng):本題考查了直線與平面垂直的判定,考查了二面角的平面角.訓(xùn)練了利用平面法向量求二面角的大小,是中檔題.