已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線為y=-
5
2
x,則它的離心率為( 。
A、
5
2
B、
3
2
C、
3
5
5
D、
2
3
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出雙曲線的漸近線方程,可得b=
5
2
a,再由離心率公式及a,b,c的關(guān)系,計算即可得到所求值.
解答: 解:雙曲線
x2
a2
-
y2
b2
=1的漸近線方程為y=±
b
a
x,
由一條漸近線為y=-
5
2
x,可得
b
a
=
5
2
,
即b=
5
2
a,
即有e=
c
a
=
a2+b2
a
=
a2+
5
4
a2
a
=
3
2

故選B.
點評:本題考查雙曲線的方程和性質(zhì),考查漸近線方程的運(yùn)用,考查離心率的求法,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xa的圖象過點(4,2),令an=
1
f(n+1)+f(n)
,n∈N*,記數(shù)列{an}的前n項和為Sn,則S2015=( 。
A、
2013
-1
B、
2014
-1
C、
2015
-1
D、
2016
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a1nx-x
x
在x=l處的切線與直線x-y+10=0平行.
(1)求a的值;
(2)若函數(shù)y=f(x)-m在區(qū)間[l,e2]上有兩個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2sinx+cos(x-
π
2
),x∈R.
(1)判斷函數(shù)f(x)的奇偶性;
(2)若f(α)=1,f(β)=
3
2
2
,α,β∈(0,
π
2
),求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
16
-
y2
9
=1的左、右焦點為F1,F(xiàn)2,其上一點P滿足PF1=5PF2,則點P到右準(zhǔn)線的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與x軸的非負(fù)半軸重合.若曲線C1的方程為ρsin(θ-
π
6
)+2
3
=0,曲線C2的參數(shù)方程為
x=cosθ
y=sinθ

(Ⅰ) 將C1的方程化為直角坐標(biāo)方程;
(Ⅱ)若點Q為C2上的動點,P為C1上的動點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線m被兩平行線l1:x-y+1=0與l2:x-y+3=0所截得的線段的長為2
2
,則直線m的傾斜角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x2
x-1
(x>1).
(1)求不等式f(x)>2x+1的解集;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC,AB=7,AC=8,BC=9,P為平面ABC內(nèi)一點,滿足
PA
PC
=-7
,則
|PB
|
的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案