分析 因為線段AB為所求圓的直徑,所以利用中點坐標(biāo)公式求出線段AB的中點即為所求圓的圓心坐標(biāo),再利用兩點間的距離公式求出圓心C與點A之間的距離即為所求圓的半徑,根據(jù)求出的圓心坐標(biāo)與半徑寫出圓的標(biāo)準(zhǔn)方程即可.
解答 解:∵A(1,-4),B(-5,4),設(shè)圓心為C,
∴圓心C的坐標(biāo)為C(-2,0);
∴|AC|=5,即圓的半徑r=5,
則以線段AB為直徑的圓的方程是(x+2)2+y2=25.
故答案為:(x+2)2+y2=25.
點評 此題考查了中點坐標(biāo)公式,兩點間的距離公式以及圓的標(biāo)準(zhǔn)方程,解答本題的關(guān)鍵是靈活運用已知條件確定圓心坐標(biāo)及圓的半徑.同時要求學(xué)生會根據(jù)圓心與半徑寫出圓的標(biāo)準(zhǔn)方程.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平行 | B. | 相交并垂直 | C. | 相交且成60°角 | D. | 異面 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y2=8x | B. | y2=-8x | C. | y2=16x | D. | y2=-16x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | -1 | D. | -2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com