正四棱錐中,,點M,N分別在PA,BD上,且

(Ⅰ)求異面直線MN與AD所成角;
(Ⅱ)求證:∥平面PBC;
(Ⅲ)求MN與平面PAB所成角的正弦值.
(1)90o
(2)要證明線面平行,則主要證明線線平行即可,結(jié)合判定定理得到。
(3)

試題分析:(Ⅰ)設(shè)AC與BD的交點為O,AB=PA=2。以點O為坐標(biāo)原點,,方向分別是x軸、y軸正方向,建立空間直角坐標(biāo)系O-xyz.
則A(1,-1,0),B(1,1,0),C(-1,1,0),D(-1,-1,0),
設(shè)P(0,0,p), 則=(-1,1,p),又AP=2,∴1+1+p2=4,∴p=,
=,
,
,,
,∴異面直線MN與AD所成角為90o
(Ⅱ)∵,
設(shè)平面PBC的法向量為="(a,b,c)," ,
= , ∵,∴MN∥平面PBC。      
(Ⅲ)設(shè)平面PAB的法向量為="(x,y,z),"
,∴,        
= , cos<> =,
∴MN與平面PAB所成角的正弦值是            

點評:主要是考查了線面的位置關(guān)系的運用,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在四棱錐中,底面是正方形,側(cè)面是正三角形,平面底面

(I) 證明:平面;
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在邊長為1的等邊三角形中,分別是邊上的點,,的中點,交于點,將沿折起,得到如圖所示的三棱錐,其中

(1) 證明://平面;
(2) 證明:平面;
(3) 當(dāng)時,求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,三棱柱A1B1C1—ABC的三視圖中,正(主)視圖和側(cè)(左)視圖是全等的矩形,俯視圖是等腰直角三角形,點M是A1B1的中點.

(1)求證:B1C∥平面AC1M;
(2)求證:平面AC1M⊥平面AA1B1B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知長方形ABCD中,AB=2,A1,B1分別是AD,BC邊上的點,且AA1=BB1="1," E,F(xiàn)分別為B1D與AB的中點. 把長方形ABCD沿直線折成直角二面角,且.

(1)求證:
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知四棱錐的底面是直角梯形,,,側(cè)面為正三角形,,.如圖所示.

(1) 證明:平面;
(2) 求四棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐A-BCD中,△ABD和△BCD是兩個全等的等腰直角三角形,O為BD的中點,且AB=AD=CB=CD=2,AC=

(1)當(dāng)時,求證:AO⊥平面BCD;
(2)當(dāng)二面角的大小為時,求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在斜三棱柱ABC—A1B1C1中,AB⊥側(cè)面BB1C1C,BC=2,BB1=4,AB=,∠BCC1=60°.

(Ⅰ)求證:C1B⊥平面A1B1C1
(Ⅱ)求A1B與平面ABC所成角的正切值;
(Ⅲ)若E為CC1中點,求二面角A—EB1—A1的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

從正方體的8個頂點中選取4個點,連接成一個四面體,則這個四面體可能為:①每個面都是直角三解形,②每個面都是等邊三解形,有且只有一個面是直角三角形,④有且只有一個面是等邊三角形,其中正確的說法有                (寫出所有正確結(jié)論的編號)

查看答案和解析>>

同步練習(xí)冊答案