【題目】已知函數(shù);

1當(dāng)時(shí),若,求的取值范圍;

2若定義在上奇函數(shù)滿足,且當(dāng)時(shí),

上的反函數(shù);

3對(duì)于(2)中的,若關(guān)于的不等式上恒成立,求實(shí)

數(shù)的取值范圍;

【答案】1;(2;(3;

【解析】試題分析:1)根據(jù)題意,根據(jù)對(duì)數(shù)函數(shù)的增減性及真數(shù)大于零,列出不等式,求解即可;

2)根據(jù)條件得到其周期為4,當(dāng)時(shí) 再根據(jù)上述性質(zhì)及奇函數(shù), ,求其反函數(shù),同理當(dāng)時(shí) ,也可求出函數(shù)反函數(shù);

3)不等式恒成立轉(zhuǎn)化為恒成立,

,分類(lèi)討論后,綜合討論結(jié)果,可得實(shí)數(shù)t的取值范圍.

試題解析:1)原不等式可化為,

,得;

2是奇函數(shù) ,

當(dāng)時(shí), , 此時(shí), 所以,

當(dāng)時(shí), , ,此時(shí), ,所以,

綜上,

3由題意知, 上是增函數(shù),可證明在上是減函數(shù),設(shè),分別討論解得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,其圖象關(guān)于點(diǎn)中心對(duì)稱,其導(dǎo)函數(shù)為,當(dāng)時(shí), ,則不等式的解集為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(sinx,2cosx), =(5 cosx,cosx),函數(shù)f(x)= +| |2
(1)求函數(shù)f(x)的最小正周期;
(2)若x∈( , )時(shí),f(x)=﹣3,求cos2x的值;
(3)若cosx≥ ,x∈(﹣ , ),且f(x)=m有且僅有一個(gè)實(shí)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】要得到函數(shù) 的圖象,只需要將函數(shù)y=sin3x的圖象( )m.
A.向右平移 個(gè)單位
B.向左平移 個(gè)單位
C.向右平移 個(gè)單位
D.向左平移 個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四邊形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=

(1)求△ACD的面積;
(2)若BC=2 ,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C:y2=2px(p>0),其焦點(diǎn)為F(1,0),過(guò)F作斜率為k的直線交拋物線C于A、B兩點(diǎn),交其準(zhǔn)線于P點(diǎn).

(1)求P的值;
(2)設(shè)|PA|+|PB|=λ|PA||PB||PF|,若k∈[ ,1],求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在x0∈[﹣1,1]使得不等式| ﹣a +1|≤ 成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)軸交于兩點(diǎn),點(diǎn)在拋物線上(點(diǎn)在第一象限),.記,梯形面積為

求面積為自變量的函數(shù)解析式;

其中為常數(shù)且,的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知對(duì)任意x∈R,恒有f(﹣x)=﹣f(x),g(﹣x)=g(x),且當(dāng)x>0時(shí),f′(x)>0,g′(x)>0,則當(dāng)x<0時(shí)有(
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0

查看答案和解析>>

同步練習(xí)冊(cè)答案