如圖,過拋物線焦點的直線依次交拋物線與圓于點A、B、C、D,則的值是________

 

【答案】

1

【解析】解:設(shè)A、D的坐標分別為(x1,y1),(x2,y2),依題意知焦點F(0,1),則設(shè)直線AD方程為:y=kx+1,

聯(lián)立

 y=kx+1

   消去x,得y2-(2+4k2)y+1=0,

∴y1+y2=2+4k2,y1•y2=1

又根據(jù)拋物線定義得AF=y1+p/ 2 ,F(xiàn)D=y2+p/ 2 ,∴AF=y1+1,F(xiàn)D=y2+1

 AB • CD = |AB |• |CD |=(AF-BF)(FD-CF)=(AF-1)(FD-1)

=y1•y2=1.

故答案為1

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知拋物線G的頂點在原點,焦點在y軸正半軸上,點P(m,4)到其準線的距離等于5.
(I)求拋物線G的方程;
(II)如圖,過拋物線G的焦點的直線依次與拋物線G及圓x2+(y-1)2=1交于A、C、D、B四點,試證明|AC|•|BD|為定值;
(III)過A、B分別作拋物G的切線l1,l2且l1,l2交于點M,試求△ACM與△BDM面積之和的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省紹興市高三教學質(zhì)量調(diào)測理科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分15分)如圖,過拋物線焦點F的直線l與拋物線交于A,B兩點(A在第一象限),點C(0,t)(t>1).

(I)若△CBF,△CFA,△CBA的面積成等差數(shù)列,求直線l的方程;

(II)若,且∠FAC為銳角,試求t的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省南通市如東縣栟茶高級中學高考數(shù)學一模試卷(解析版) 題型:解答題

已知拋物線G的頂點在原點,焦點在y軸正半軸上,點P(m,4)到其準線的距離等于5.
(I)求拋物線G的方程;
(II)如圖,過拋物線G的焦點的直線依次與拋物線G及圓x2+(y-1)2=1交于A、C、D、B四點,試證明|AC|•|BD|為定值;
(III)過A、B分別作拋物G的切線l1,l2且l1,l2交于點M,試求△ACM與△BDM面積之和的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年高考數(shù)學最有可能考的50題(解析版) 題型:解答題

已知拋物線G的頂點在原點,焦點在y軸正半軸上,點P(m,4)到其準線的距離等于5.
(I)求拋物線G的方程;
(II)如圖,過拋物線G的焦點的直線依次與拋物線G及圓x2+(y-1)2=1交于A、C、D、B四點,試證明|AC|•|BD|為定值;
(III)過A、B分別作拋物G的切線l1,l2且l1,l2交于點M,試求△ACM與△BDM面積之和的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年福建省廈門市高三3月質(zhì)量檢查數(shù)學試卷(理科)(解析版) 題型:解答題

已知拋物線G的頂點在原點,焦點在y軸正半軸上,點P(m,4)到其準線的距離等于5.
(I)求拋物線G的方程;
(II)如圖,過拋物線G的焦點的直線依次與拋物線G及圓x2+(y-1)2=1交于A、C、D、B四點,試證明|AC|•|BD|為定值;
(III)過A、B分別作拋物G的切線l1,l2且l1,l2交于點M,試求△ACM與△BDM面積之和的最小值.

查看答案和解析>>

同步練習冊答案