已知實(shí)數(shù)x、y滿足不等式組
x-2y+1≥0
2x-y-1≤0
4x+2y+1≤0
x2+y2≤1
,則3x+y的取值范圍為( 。
A、[-3,-
3
8
]
B、[-3,-
9
10
]
C、[-
10
,-
9
10
]
D、[-
10
,-
3
8
]
考點(diǎn):簡單線性規(guī)劃
專題:計(jì)算題,作圖題,不等式的解法及應(yīng)用
分析:由題意作出其平面區(qū)域,令z=3x+y化為y=-3x+z,z相當(dāng)于直線y=-3x+z的縱截距,由幾何意義可得.
解答: 解:由題意作出其平面區(qū)域,
令z=3x+y化為y=-3x+z,z相當(dāng)于直線y=-3x+z的縱截距,
4x+2y+1=0
y=2x-1
解得,A(
1
8
-
3
4
),
此時(shí)z=-
3
8

y=
1
3
x
x2+y2=1
解得,
x=-
3
10
10
y=-
10
10
,
此時(shí)z=-
10

則3x+y的取值范圍為[-
10
,-
3
8
].
故選D.
點(diǎn)評:本題考查了簡單線性規(guī)劃,作圖要細(xì)致認(rèn)真,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1,2an+1=2an+1,n∈N+.?dāng)?shù)列{bn}的前n項(xiàng)和為Sn,Sn=9-(
1
3
)
n-2
,n∈N+
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=an•bn,n∈N+.求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{bn}滿足:bn+1=2bn+2,bn=an+1-an,且a1=2,a2=4.
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,兩矩形ABCD、ABEF所在平面互相垂直,DE與平面ABCD及平面ABEF所成角分別為30°、45°,M、N分別為DE與DB的中點(diǎn),且MN=1,線段AB的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程(
1
3
)|x|-a-1=0
有解,則a的取值范圍是( 。
A、0<a≤1B、-1<a≤0
C、a≥1D、a>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

p為橢圓
x2
9
+
y2
4
=1上的一點(diǎn),F(xiàn)1,F(xiàn)2分別為左、右焦點(diǎn),且∠F1PF2=60° 則|PF1|•|PF2|=(  )
A、
8
3
B、
16
3
C、
4
3
3
D、
8
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知首項(xiàng)都是1的數(shù)列{an},{bn}(bn≠0,n∈N*)滿足anbn+1-an+1bn+3bnbn+1=0
(I)令Cn=
an
bn
,求數(shù)列{cn}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}為各項(xiàng)均為正數(shù)的等比數(shù)列,且b32=4b2•b6,求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,圖象關(guān)于y軸對稱的是( 。
A、y=log2x
B、y=
x
C、y=x|x|
D、y=x -
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有A,B,C,D四個(gè)長方體容器,A,B的底面積均為x2,高分別為x,y;C,D的底面積均為y2,高分別為x,y(其中x≠y).現(xiàn)規(guī)定一種兩人的游戲規(guī)則:每人從四種容器中取兩個(gè)盛水,盛水多者為勝.問先取者在未能確定x與y大小的情況下有沒有必勝的方案?若有的話,有幾種?

查看答案和解析>>

同步練習(xí)冊答案