已知函數(shù).
(1)若曲線經(jīng)過點(diǎn),曲線在點(diǎn)處的切線與直線平行,求的值;
(2)在(1)的條件下,試求函數(shù)(為實(shí)常數(shù),)的極大值與極小值之差;
(1)
(2)當(dāng)或時(shí),;
當(dāng)時(shí),
【解析】(1)根據(jù)f(x)過點(diǎn)P(1,2),,可建立關(guān)于a,b的兩個(gè)方程,從而解出a,b 的值.
(2)在(1)的基礎(chǔ)上,,然后利用求得極大值和極小值,從而可求出它們的差.
解:(1),………………………1分
直線的斜率為2,曲線在點(diǎn)處的切線的斜率為,
……① ……………………2分
曲線經(jīng)過點(diǎn),
……② ……………………3分
由①②得: ……………………4分
(2)由(1)知:, ,, 由,或.……………5分
當(dāng),即或時(shí),,,變化如下表
+ |
0 |
-[ |
0 |
+ |
|
極大值 |
|
極小值 |
|
由表可知:
……………9分
當(dāng)即時(shí),,,變化如下表
- |
0 |
+ |
0 |
- |
|
極小值 |
|
極大值 |
|
由表可知:
………………13分
綜上可知:當(dāng)或時(shí),;
當(dāng)時(shí),………………14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)已知函數(shù).
(1)若,試確定函數(shù)的單調(diào)區(qū)間;(2)若,且對于任意,恒成立,試確定實(shí)數(shù)的取值范圍;(3)設(shè)函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆寧夏高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)已知函數(shù),
(1)若,求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省岳陽市高三第一次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)若為的極值點(diǎn),求實(shí)數(shù)的值;
(2)若在上為增函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省華中師大一附中高三上學(xué)期期中檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)。
(1)若,求函數(shù)的值;
(2)求函數(shù)的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:吉林省10-11學(xué)年高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題
已知函數(shù).
(1)若從集合中任取一個(gè)元素,從集合中任取一個(gè)元素,求方程有兩個(gè)不相等實(shí)根的概率;
(2)若是從區(qū)間中任取的一個(gè)數(shù),是從區(qū)間中任取的一個(gè)數(shù),求方程沒有實(shí)根的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com