【題目】中,設(shè)內(nèi)角的對邊分別為,,且.

1)若,成等比數(shù)列,求證:

2)若為銳角),.邊上的高.

【答案】1)見解析(2

【解析】

1)由,,成等比數(shù)列得,再利用余弦定理及基本不等式求出的范圍,從而證明

2)先利用二倍角公式解;再由正弦定理求得;下面可采用種方法求解.方法一:由余弦定理求得,再利用邊上的高代入即得;方法二:先由同角的三角函數(shù)的基本關(guān)系算出,進而算出,再利用邊上的高代入即得

解:(1)證明:因為成等比數(shù)列,所以

(當且僅當時取等號)

又因為為三角形的內(nèi)角,所以

2)在中,因為,所以.

又因為,,

所以由正弦定理,解得

1:由,.

由余弦定理,得.

解得(舍)

所以邊上的高.

2:由.

又因為,所以

所以

(舍)

(或:因為,且,所以為銳角,)

又因為所以

所以邊上的高.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】歷史上有不少數(shù)學家都對圓周率作過研究,第一個用科學方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長確定圓周長的上下界,開創(chuàng)了圓周率計算的幾何方法,而中國數(shù)學家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱為割圓術(shù).近代無窮乘積式、無窮連分數(shù)、無窮級數(shù)等各種值的表達式紛紛出現(xiàn),使得值的計算精度也迅速增加.華理斯在1655年求出一個公式:,根據(jù)該公式繪制出了估計圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面,,且,,,,N的中點.

1)求證:平面

2)求平面與平面所成銳二面角的余弦值

3)在線段上是否存在一點M,使得直線與平面所成角的正弦值為,若存在,求出的值;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線y2=4x的焦點的直線l與拋物線交于A,B兩點,設(shè)點M30.若△MAB的面積為,則|AB|=( )

A.2B.4C.D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為t為參數(shù)),曲線C2的參數(shù)方程為α為參數(shù)),以坐標原點為極點.x軸正半軸為極軸建立極坐標系.

(Ⅰ)求曲線C1的普通方程和曲線C2的極坐標方程;

(Ⅱ)射線與曲線C2交于O,P兩點,射線與曲線C1交于點Q,若△OPQ的面積為1,求|OP|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中是自然對數(shù)的底數(shù).

1)當時,求曲線處的切線方程;

2)如果對任意,不等式恒成立,求實數(shù)的取值范圍;

3)討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)f(x)若存在x0∈Rf(x0)x0成立,則稱x0f(x)的不動點.已知f(x)ax2(b1)xb1(a≠0)

(1)a1,b=-2時,求函數(shù)f(x)的不動點;

(2)若對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求a的取值范圍;

(3)(2)的條件下,若yf(x)圖象上AB兩點的橫坐標是函數(shù)f(x)的不動點,且A,B兩點關(guān)于直線ykx對稱,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}的前n項和為,且滿足,,.

1)求數(shù)列{an}的通項公式;

2)記,.

①求Tn

②求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖中有一個信號源和五個接收器.接收器與信號源在同一個串聯(lián)線路中時,就能接收到信號,否則就不能接收到信號.若將圖中左端的六個接線點隨機地平均分成三組,將右端的六個接線點也隨機地平均分成三組,再把所得六組中每組的兩個接線點用導(dǎo)線連接,則這五個接收器能同時接收到信號的概率是( ).

A.B.C.D.

查看答案和解析>>

同步練習冊答案