(1)求
(2).
(1);. (2).

試題分析:(1)直接由向量的運(yùn)算法則即可得.
(2)將(1)小題的結(jié)果代入得:.這是一個(gè)關(guān)于的二次式,所以通過配方利用二次函數(shù)的圖象來求其最小值.
配方得. ,所以.
,作出拋物線,它的對(duì)稱軸為,結(jié)合圖象可知,需分
、、三種情況討論.
試題解析:(1).
.
,所以.
(2).
,所以.
①當(dāng)時(shí),當(dāng)且僅當(dāng)時(shí),取最小值-1,這與題設(shè)矛盾.
②當(dāng)時(shí),當(dāng)且僅當(dāng)時(shí),取最小值.由.
③當(dāng)時(shí),當(dāng)且僅當(dāng)時(shí),取最小值.由,故舍去..
綜上得:.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,以為始邊,角的終邊與單位圓的交點(diǎn)在第一象限,已知.
(1)若,求的值;
(2)若點(diǎn)橫坐標(biāo)為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線與圓交于、兩點(diǎn),且,其中為坐標(biāo)原點(diǎn),則正實(shí)數(shù)的值為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若向量,滿足,,且,則的夾角為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線的方向向量分別為,若,則實(shí)數(shù)=        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖, 在等腰三角形中, 底邊, , , 若, 則=        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知平面向量,的夾角為,且,則的最小值為(  )
A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

中,已知,點(diǎn)時(shí)的垂直平分線上任意一點(diǎn),則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,則實(shí)數(shù)的值是(       )
A.-lB.0C.1D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案