10.方程sinx+$\sqrt{3}$cosx=1的解為$\left\{{x|x=kπ+{{({-1})}^k}\frac{π}{6}-\frac{π}{3},k∈Z}\right\}$.

分析 先利用兩角和公式對sinx+$\sqrt{3}$cosx=1化簡整理,進而根據(jù)正弦函數(shù)的性質可求得x的解集.

解答 解:∵sinx+$\sqrt{3}$cosx=1,
∴2sin(x+$\frac{π}{3}$)=1,可得:sin(x+$\frac{π}{3}$)=$\frac{1}{2}$,
∴x+$\frac{π}{3}$=2kπ+$\frac{π}{6}$,k∈Z,或x+$\frac{π}{3}$=2kπ+$\frac{5π}{6}$,k∈Z,
∴方程sinx+$\sqrt{3}$cosx=1的解為:$\left\{{x|x=kπ+{{({-1})}^k}\frac{π}{6}-\frac{π}{3},k∈Z}\right\}$.
故答案為:$\left\{{x|x=kπ+{{({-1})}^k}\frac{π}{6}-\frac{π}{3},k∈Z}\right\}$.

點評 本題主要考查了終邊相同的角、正弦函數(shù)的基本性質.考查了學生對正弦函數(shù)基礎知識的理解和運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.A,B,C三位抗戰(zhàn)老兵應邀參加了在北京舉行的“紀念抗戰(zhàn)勝利70周年”大閱兵的老兵方隊,現(xiàn)安排這三位老兵分別坐在某輛檢閱車的前三排(每兩人均不坐同一排),則事件“A或B坐第一排”的概率為(  )
A.$\frac{2}{3}$B.$\frac{3}{5}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.一次拋擲不同的兩枚骰子,則恰好出現(xiàn)點數(shù)之和為7的結果的種數(shù)是( 。
A.36B.3C.6D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.以下判斷正確的個數(shù)是( 。
①相關系數(shù)r,|r|值越小,變量之間的相關性越強.
②命題“存在x∈R,x2+x-1<0”的否定是“不存在x∈R,x2+x-1≥0”.
③“p∨q”為真是“¬p”為假的必要不充分條件.
④若回歸直線的斜率估計值是1.23,樣本點的中心為(4,5),則回歸直線方程是$\stackrel{∧}{y}$=1.23x+0.08.
A.4B.2C.3D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知a,b滿足a+b=3,求a2+b2+10a-4b+29的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.若sinα=$\frac{{\sqrt{5}}}{5}$,sinβ=$\frac{{\sqrt{10}}}{10}$,其α,β為銳角,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知(x+$\frac{1}{2\sqrt{x}}$)n的展開式中的第二項和第三項的系數(shù)相等.
(1)求n的值;
(2)求展開式中所有二項式系數(shù)的和;
(3)求展開式中所有的有理項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知數(shù)列{an}的通項公式為an=n2-2an(n∈N*),且當n≠4時,an>a4,則實數(shù)a的取值范圍是$(\frac{7}{2},\frac{9}{2})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.某消防員在一次執(zhí)行任務過程中,遇到突發(fā)事件,需從10m長的直桿頂端從靜止開始勻加速下滑,加速度大小a1=8m/s2.然后立即勻減速下滑,減速時的最大加速度a2=4m/s2.若落地時的速度不允許超過4m/s,把消防員看成質點,求該消防員下滑全過程的最短時間.

查看答案和解析>>

同步練習冊答案