10.設集合A={x|4-x2>0},B={x|y=lg(-x2+2x+3)}.
(Ⅰ)求集合A∩B;
(Ⅱ)若不等式2x2+ax+b<0的解集為B,求a,b的值.

分析 (Ⅰ)求出集合A,B,根據(jù)交集的定義進行運用即可.
(Ⅱ)根據(jù)不等式的解與方程的關系,直接求解.

解答 解:(Ⅰ)A={x|x2<4}={x|-2<x<2},B={x|y=lg(-x2+2x+3)},滿足-x2+2x+3>0,解得:-1<x<3
∴B={x|-1<x<3},
故A∩B={x|-1<x<2};
(Ⅱ)因為2x2+ax+b<0的解集為B={x|-1<x<3},
所以-1和3為方程2x2+ax+b=0的兩根.
所以由韋達定理得:$\left\{\begin{array}{l}{-1+3=-\frac{a}{2}}\\{(-1)×3=\frac{2}}\end{array}\right.$解得:a=-4,b=-6.
故:a,b的值分別為-4,-6.

點評 本題考查不等式的解法和集合中交集的運算.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=|cosx|sinx,給出下列四個說法:
①函數(shù)f(x)的周期為π;
②若|f(x1)|=|f(x2)|,則x1=x2+kπ,k∈Z;
③f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}}$]上單調遞增;
④f(x)的圖象關于點(-$\frac{π}{2}$,0)中心對稱.
其中正確說法的個數(shù)是(  )
A.3個B.2個C.1個D.0個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.關于θ的方程cosθ=lnsinθ,(θ∈(0,π))的解的個數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.如圖,在四邊形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2$\sqrt{2}$,AD=2,求四邊形ABCD繞AD旋轉一周所成幾何體的表面積及體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若函數(shù)f(x)=$\left\{\begin{array}{l}{(b-\frac{3}{2})x+b-1(x>0)}\\{-{x}^{2}+(2-b)x(x≤0)}\end{array}\right.$在R上為增函數(shù),則實數(shù)b的取值范圍是($\frac{3}{2}$,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx-ax+$\frac{2}{x}$(a∈R).
(Ⅰ)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)y=f(x)在定義域內存在兩個極值點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若二次函數(shù)的圖象被x軸所截得的線段的長為2,且其頂點坐標為(-1,-1),則此二次函數(shù)的解析式是y=x2+2x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,在四面 體ABCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2$\sqrt{2}$,M是AD的中點,P是BM的中點,點Q在線段AC 上,且AQ=3QC.
(1)求證:PQ⊥AD;
(2)若∠BDC=45°,求直線CD與平面ACB所成角的大;
(3)若CD=1,則在線段BD上是否存在點E,使得平面CPE⊥平面CMB?若存在,求出點E的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知首項為3的等比數(shù)列{an}的前n項和為${S_n}(n∈{N^*})$,且S3,S2,S4恰成等差數(shù)列,則數(shù)列{an}的通項公式為an=3•(-2)n-1

查看答案和解析>>

同步練習冊答案