17.雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為y=$\frac{\sqrt{3}}{3}$x,過焦點且垂直于y軸的弦長為6,
(1)求雙曲線方程;
(2)過雙曲線的下焦點作傾角為45°的直線交曲線與MN,求MN的長.

分析 (1)利用雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為y=$\frac{\sqrt{3}}{3}$x,過焦點且垂直于y軸的弦長為6,建立方程,即可求雙曲線方程;
(2)過雙曲線的下焦點作傾角為45°的直線交曲線與MN,聯(lián)立方程,即可求MN的長.

解答 解:(1)由題意,$\frac{a}$=$\frac{\sqrt{3}}{3}$,$\frac{2^{2}}{a}$=6,
∴$a=1,b=\sqrt{3}$,
∴雙曲線方程為y2-$\frac{{x}^{2}}{3}$=1;
(2)過雙曲線的下焦點作傾角為45°的直線方程為y=x-2,
代入雙曲線方程可得2x2-12x+9=0
∴|MN|=$\sqrt{2}•\sqrt{36-4×\frac{9}{2}}$=6.

點評 本題考查雙曲線的方程與性質(zhì),考查直線與雙曲線的位置關(guān)系,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.在△ABC中,若角A、B、C依次成等差數(shù)列,且a=1,b=$\sqrt{3}$,則S△ABC=(  )
A.$\frac{3}{4}$B.$\frac{{\sqrt{3}}}{4}$C.$\frac{{\sqrt{3}}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.點M(x,y)與定點F(1,0)的距離和它到直線l:x=2的距離的比為$\frac{{\sqrt{2}}}{2}$,
(Ⅰ)求點M的軌跡.
(Ⅱ)是否存在點M到直線$\frac{x}{{\sqrt{2}}}$+y=1的距離最大?最大距離是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.動圓M與圓O:x2+y2=1外切,與圓C:(x-3)2+y2=1內(nèi)切,那么動圓的圓心M的軌跡是(  )
A.雙曲線B.雙曲線的一支C.橢圓D.拋物線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知集合A={x|-2≤x<5},B={x|3x-5≥x-1}.
(1)求A∩B;
(2)若集合C={x|-x+m>0},且A∪C=C,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知直線l1、l2,平面α,l1∥l2,l1∥α,那么l2與平面α的關(guān)系是(  )
A.l1∥αB.l2⊥αC.l2∥α或l2D.l2與α相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知圓心在y軸上的圓C經(jīng)過點A(1,2)和點B(0,3).
(Ⅰ)求圓C的方程;
(Ⅱ)若直線l在兩坐標軸上的截距相等,且被圓C截得的弦長為$\sqrt{2}$,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為$\frac{1}{2}$,且該橢圓的短軸長為2$\sqrt{3}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點F2的直線l與橢圓交于M、N兩點,求△F1MN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知二次函數(shù)f(x)=ax2+bx+1,a,b∈R,當x=-1時,函數(shù)f(x)取到最小值,且最小值為0;
(1)求f(x)解析式;
(2)關(guān)于x的方程f(x)=|x+1|-k+3恰有兩個不相等的實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案