【題目】(2015·湖南)某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎,求下列問題:(1)求顧客抽獎1次能獲獎的概率(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為 X ,求 X 的分布列和數(shù)學期望.
(1)(1)求顧客抽獎1次能獲獎的概率
(2)(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為 , 求的分布列和數(shù)學期望.
【答案】
(1)
(2)
X | 0 | 1 | 2 | 3 |
P |
E(X)=.
【解析】(1):記事件={從甲箱中摸出的1個球是紅球},={從乙箱中摸出1一個球是紅球}={顧客抽獎1次獲得一等獎}={顧客抽獎一次獲得二等獎},={顧客抽獎一次能獲獎}則可知與相互獨立,與互斥,與互斥且,+、因為所以,==故所求概率為=
(2)顧客抽獎3次獨立重復實驗,由(1)知顧客抽獎一次獲得一等獎的概率為因為于是 , , , E(X)=.
的分布列為隨機變量的概率分布與期望以及概率統(tǒng)計在生活中的實際應用,這一直都是高考命題的熱點,試題的背景由傳統(tǒng)的摸球,骰子問題向現(xiàn)實生活中的熱點問題轉(zhuǎn)化,并且與統(tǒng)計的聯(lián)系越來越密切,與統(tǒng)計中的抽樣,頻率分布直方圖等基礎(chǔ)知識綜合的試題逐漸增多,在復習時應予以關(guān)注.
【考點精析】認真審題,首先需要了解離散型隨機變量及其分布列(在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列).
科目:高中數(shù)學 來源: 題型:
【題目】(2015福建)“對任意x,ksinxcosx<x”是“k<1”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)x3+ax+b=0,其中a,b均為實數(shù),下列條件中,使得該三次方程中僅有一個實根的是 ,(寫出所有正確條件的編號)
1、a=-3,b=-3;2.a=-3,b=2;3、a=-3,b2;4、a=0,b=2;5、a=1,b=2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2015·陜西)在直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)).以原點為極點,x軸正半軸為極軸建立極坐標系,c的極坐標方程為=2sin.
(1)寫出c的直角坐標方程;
(2)P為直線l上一動點,當P到圓心C的距離最小時,求P的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足:,,且(n=1,2,...).記
集合.
(1)(Ⅰ)若,寫出集合M的所有元素;
(2)(Ⅱ)若集合M存在一個元素是3的倍數(shù),證明:M的所有元素都是3的倍數(shù);
(3)(Ⅲ)求集合M的元素個數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若將函數(shù)y=2sin 2x的圖像向左平移 個單位長度,則評議后圖象的對稱軸為( )
A.x= – (k∈Z)
B.x= + (k∈Z)
C.x= – (k∈Z)
D.x= + (k∈Z)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(選修4﹣1:幾何證明選講)
如圖,直線AB為圓的切線,切點為B,點C在圓上,∠ABC的角平分線BE交圓于點E,DB垂直BE交圓于D.
(1)證明:DB=DC;
(2)設(shè)圓的半徑為1,BC= ,延長CE交AB于點F,求△BCF外接圓的半徑.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)在其圖像上存在不同的兩點A(x1 , y1),B(x2 , y2),其坐標滿足條件:|x1x2+y1y2|﹣ 的最大值為0,則稱f(x)為“柯西函數(shù)”, 則下列函數(shù):
①f(x)=x+ (x>0);
②f(x)=lnx(0<x<3);
③f(x)=2sinx;
④f(x)= .
其中為“柯西函數(shù)”的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com