如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,點M為PC的中點.
(1)求證:PA∥平面BMD;
(2)求證:AD⊥PB;
(3)若AB=PD=2,求點A到平面BMD的距離.

(1)證明:設(shè)AC和BD交于點O,則由底面ABCD是平行四邊形可得O為AC的中點.
由于點M為PC的中點,故MO為三角形PAC的中位線,故MO∥PA.再由PA不在平面BMD內(nèi),而MO在平面BMD內(nèi),
故有PA∥平面BMD.
(2)由PD⊥平面ABCD,可得PD⊥AD,平行四邊形ABCD中,∵∠BCD=60°,AB=2AD,
∴cos∠BAD==cos60°=,∴AD⊥BD.
這樣,AD垂直于平面PBD內(nèi)的兩條相交直線,故AD⊥平面PBD,∴AD⊥PB.
(3)若AB=PD=2,則AD=1,BD=AB•sin∠BAD=2×=,
由于平面BMD經(jīng)過AC的中點,故點A到平面BMD的距離等于點C到平面BMD的距離.
取CD得中點N,則MN⊥平面ABCD,且MN=PD=1.
設(shè)點C到平面MBD的距離為h,則h為所求.
由AD⊥PB 可得BC⊥PB,故三角形PBC為直角三角形.
由于點M為PC的中點,利用直角三角形斜邊的中線等于斜邊的一半,可得MD=MB,故三角形MBD為等腰三角形,
故MO⊥BD.
由于PA===,∴MO=
由VM-BCD=VC-MBD 可得,•()•MN=•(×BD×MO )×h,
故有 ×()×1=•()•h,
解得h=
分析:(1)設(shè)AC和BD交于點O,MO為三角形PAC的中位線可得MO∥PA,再利用直線和平面平行的判定定理,證得結(jié)論.
(2)由PD⊥平面ABCD,可得PD⊥AD,再由cos∠BAD==,證得 AD⊥BD,可證AD⊥平面PBD,從而證得結(jié)論.
(3)點A到平面BMD的距離等于點C到平面BMD的距離h,求出MN、MO的值,利用等體積法求得點C到平面MBD的距離h.
點評:本題主要考查直線和平面平行的判定定理,直線和平面垂直的性質(zhì),用等體積法求點到平面的距離,體現(xiàn)了數(shù)形結(jié)合和等價轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點A在PD上的射影為點G,點E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習(xí)冊答案