1.在正方體ABCD-A1B1C1D1的各個頂點與各楞的中點共20個,任取2點連成直線,在這些直線中任取一條,它與對角線BD1垂直的概率為(  )
A.$\frac{21}{190}$B.$\frac{21}{166}$C.$\frac{27}{166}$D.$\frac{27}{154}$

分析 如圖,易證明BD1⊥正六邊形EFGHIJ,此時在正六邊形上有C${C}_{6}^{2}$條直線與直線BD1垂直.與直線BD1垂直的平面還有平面ACB、平面NPQ、平面KLM、平面A1C1B,共有直線4×${C}_{3}^{2}$條,而所有的直線共有${C}_{20}^{2}$條,從而求得任取一條,它與對角線BD1垂直的概率.

解答 解:如圖,E,F(xiàn),G,H,I,J,K,L,M,N,P,Q分別為相應(yīng)棱上的中點,
容易證明BD1⊥正六邊形EFGHIJ
此時在正六邊形上有${C}_{6}^{2}$條直線與直線BD1垂直.
與直線BD1垂直的平面還有平面ACB、平面NPQ、平面KLM、平面A1C1B,
共有直線4×${C}_{3}^{2}$條.
正方體ABCD-A1B1C1D1的各個頂點與各棱的中點共20個點,
任取2點連成直線數(shù)為${C}_{20}^{2}$條直線
(每條棱上如直線AE,ED,AD其實為一條),
故對角線BD1垂直的概率為$\frac{15+12}{166}$.
故答案為:$\frac{27}{166}$.

點評 本題考查古典概型及其概率計算公式的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知向量$\overrightarrow a$=(-5,1),$\overrightarrow b$=(2,x),且$\overrightarrow a$⊥$\overrightarrow b$,則x的值是10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.A、B是兩個集合,A={y|y=x2-2},B={-3,1,y},其中y∈A,則y的取值集合是{y|y≥-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求與直線2x-y+10=0平行且在y軸、x軸上截距之和為2的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.集合A={1,0,x},B={|x|,y,lg(xy)},且A=B,則x,y的值分別為-1,-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知圓C的圓心為C(m,0),m<3,半徑為$\sqrt{5}$,圓C與離心率$e>\frac{1}{2}$的橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的其中一個公共點為A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點.
(1)求圓C的標準方程;
(2)若點P的坐標為(4,4),試探究直線PF1與圓C能否相切,若能,求出橢圓E和直線PF1的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)=\frac{1}{3}a{x^3}+{x^2}(a>0)$.
(Ⅰ)求函數(shù)y=f(x)的極值;
(Ⅱ)若存在實數(shù)x0∈(-1,0),且${x_0}≠-\frac{1}{2}$,使得$f({x_0})=f(-\frac{1}{2})$,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)$f(x)=2lnx-\frac{1}{2}m{x^2}-nx$,若x=2是f(x)的極大值點,則m的取值范圍為( 。
A.$({-\frac{1}{2},+∞})$B.$({-\frac{1}{2},0})$C.(0,+∞)D.$({-∞,-\frac{1}{2}})∪({0,+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知拋物線E:y2=2px(p>0)的焦點為F,過F且垂直于x軸的直線與拋物線E交于S,T兩點,以P(3,0)為圓心的圓過點S,T,且∠SPT=90°
(Ⅰ)求拋物線E和圓P的方程;
(Ⅱ)設(shè)M是圓P上的點,過點M且垂直于FM的直線l交E于A,B兩點,證明:FA⊥FB.

查看答案和解析>>

同步練習(xí)冊答案