【題目】如圖,點(diǎn)P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,則PA與BD所成角的度數(shù)為( )
A.30°
B.45°
C.60°
D.90°
【答案】C
【解析】解:如圖,以D為坐標(biāo)原點(diǎn),DA所在直線為x軸,DC所在線為y軸,DP所在線為z軸,建立空間坐標(biāo)系, ∵點(diǎn)P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,令PD=AD=1
∴A(1,0,0),P(0,0,1),B(1,1,0),D(0,0,0)
∴ =(1,0,﹣1), =(﹣1,﹣1,0)
∴cosθ= =
故兩向量夾角的余弦值為 ,即兩直線PA與BD所成角的度數(shù)為60°.
故選C
本題求解宜用向量法來做,以D為坐標(biāo)原點(diǎn),建立空間坐標(biāo)系,求出兩直線的方向向量,利用數(shù)量積公式求夾角即可
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)在五次考試中數(shù)學(xué)成績(jī)統(tǒng)計(jì)用莖葉圖如表示如圖2所示,則甲的平均成績(jī)比乙的平均成績(jī)(填高、低、相等);甲成績(jī)的方差比乙成績(jī)的方差(填大、。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C所對(duì)的邊長(zhǎng),且acosB﹣bcosA= c.
(1)求 的值;
(2)若A=60°,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若函數(shù)f(x)對(duì)于其定義域內(nèi)的某一數(shù)x0 , 有 f(x0)=x0 , 則稱x0是f (x)的一個(gè)不動(dòng)點(diǎn).已知函數(shù)f(x)=ax2+(b+1)x+b﹣1 (a≠0).
(1)當(dāng)a=1,b=﹣2時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)若對(duì)任意的實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)不動(dòng)點(diǎn),求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上兩個(gè)點(diǎn)A,B的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且A,B兩點(diǎn)關(guān)于直線y=kx+ 對(duì)稱,求b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分圖象如圖.
(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的 倍,再將所得函數(shù)圖象向右平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù):f(x)=asin2x+cos2x且f( )= .
(1)求a的值和f(x)的最大值;
(2)求f(x)的單調(diào)減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列數(shù)列中,既是遞增數(shù)列又是無窮數(shù)列的是( )
A.1, , , ,…
B.﹣1,﹣2,﹣3,﹣4,…
C.﹣1,﹣ ,﹣ ,﹣ ,…
D.1, , ,…,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形BCDE的邊長(zhǎng)為a,已知AB= BC,將△ABE沿邊BE折起,折起后A點(diǎn)在平面BCDE上的射影為D點(diǎn),則翻折后的幾何體中有如下描述:
① AB與DE所成角的正切值是 ;
②AB∥CE
③VB﹣ACE體積是 a3;
④平面ABC⊥平面ADC.
其中正確的有 . (填寫你認(rèn)為正確的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且asinAsinB+bcos2A= a.
(1)求 ;
(2)若c2=a2+ b2 , 求角C.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com