分析 (1)根據(jù)sin2+cos2θ=1,x=ρcosθ,y=ρsinθ.將參數(shù)方程和極坐標(biāo)方程化成直角坐標(biāo)方程;
(2)由題意可得當(dāng)直線x+y-4=0的平行線與橢圓相切時,|PQ|取得最值.設(shè)與直線x+y-4=0平行的直線方程為x+y+t=0,代入橢圓方程,運用判別式為0,求得t,再由平行線的距離公式,可得|PQ|的最小值.
解答 解:(1)參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$消去參數(shù),得
$\frac{{x}^{2}}{3}$+y2=1.
ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$,即為ρ($\frac{\sqrt{2}}{2}$cosθ+$\frac{\sqrt{2}}{2}$sinθ)=2$\sqrt{2}$,化為直角坐標(biāo)方程為x+y-4=0;
(2)由題意可得當(dāng)直線x+y-4=0的平行線與橢圓相切時,
|PQ|取得最值.
設(shè)與直線x+y-4=0平行的直線方程為x+y+t=0,
聯(lián)立$\left\{\begin{array}{l}{x+y+t=0}\\{{x}^{2}+3{y}^{2}=3}\end{array}\right.$
可得4x2+6tx+3t2-3=0,
由直線與橢圓相切,可得△=36t2-16(3t2-3)=0,
解得t=±2,
顯然t=-2時,|PQ|取得最小值,
即有|PQ|=$\frac{|-4-(-2)|}{\sqrt{1+1}}$=$\sqrt{2}$.
點評 本題考查參數(shù)方程和普通方程的互化、極坐標(biāo)和直角坐標(biāo)的互化,同時考查直線與橢圓的位置關(guān)系,主要是相切,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2+\sqrt{3}$ | B. | $-2-\sqrt{3}$ | C. | $2-\sqrt{3}$ | D. | $-2+\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 必要不充分 | B. | 充分不必要 | ||
C. | 充分必要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3個 | B. | 2個 | C. | 1個 | D. | 0個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b>c>a | B. | a>b>c | C. | a>c>b | D. | b>a>c |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com