①②③
分析:由定義域關于原點對稱且f(-x)=-f(x),可得f(x)是奇函數(shù),故①正確.利用不等式的性質(zhì)可得,-2<f(x)<2,故②正確. 根據(jù)奇函數(shù)f(x)在(0,+∞)上是增函數(shù),
可得函數(shù)f(x)在(-∞,0)上也是增函數(shù),故當x
1≠x
2時,一定有f(x
1)≠f(x
2),故③正確.函數(shù)g(x)=f(x)-3x在R上的零點個數(shù),即函數(shù)y=f(x)與函數(shù)y=3x的圖象交點個數(shù).而兩個增函數(shù)的圖象交點最多有兩個,故④不正確.
解答:函數(shù)
(x∈R)的定義域為R,
由f(-x)=
=-f(x),可得f(x)是奇函數(shù),故①正確.
由于-|x|≤x≤|x|,∴-
≤f(x)≤
.
∴-
<f(x)<
,∴-2<f(x)<2,故②正確.
當x>0時,
=
=2-
>0,故函數(shù)f(x)在(0,+∞)上是增函數(shù),
再由奇函數(shù)的性質(zhì)可得,函數(shù)f(x)在(-∞,0)上也是增函數(shù),且f(x)<0,f(0)=0,
故當x
1≠x
2時,一定有f(x
1)≠f(x
2),故③正確.
由③可得,函數(shù)f(x)在(-∞,+∞)上是增函數(shù),函數(shù)g(x)=f(x)-3x在R上的零點個數(shù),即函數(shù)y=f(x)與函數(shù)y=3x的圖象交點個數(shù).
而兩個增函數(shù)的圖象交點最多有兩個,故函數(shù)g(x)=f(x)-3x在R上有三個零點不可能,故④不正確.
故答案為 ①②③.
點評:本題主要考查函數(shù)的奇偶性、單調(diào)性、值域,函數(shù)的零點個數(shù)的判斷,屬于基礎題.