16.已知f(x)=loga$\frac{2+mx}{x-2}$是奇函數(shù)(其中a>1)
(1)求m的值;
(2)判斷f(x)在(2,+∞)上的單調(diào)性并證明;
(3)當(dāng)x∈(r,a-2)時(shí),f(x)的取值范圍恰為(1,+∞),求a與r的值.

分析 (1)f(x)是奇函數(shù),則f(-x)+f(x)=0即可求解m的值.
(2)定義證明(2,+∞)上的單調(diào)性即可.
(3)利用單調(diào)性當(dāng)x∈(r,a-2)時(shí),f(x)的取值范圍恰為(1,+∞),求a與r的值.

解答 解:(1)由題意:f(x)是奇函數(shù),則f(-x)+f(x)=0,即loga$\frac{2+mx}{x-2}$+$lo{g}_{a}\frac{2-xm}{-x-2}$=0
∴$\frac{(2+mx)(-mx+2)}{(x-2)(-2-x)}=1$,解得:m=±1,
當(dāng)m=-1時(shí),f(x)無(wú)意義,所以$f(x)=lo{g}_{a}\frac{x+2}{x-2}$,
故得m的值為1.
(2)由(1)得$f(x)=lo{g}_{a}\frac{x+2}{x-2}$,設(shè)2<x1<x2,
則f(x2)-f(x1)=$lo{g}_{a}\frac{{x}_{2}+2}{{x}_{2}-2}$-$lo{g}_{a}\frac{{x}_{1}+2}{{x}_{1}-2}$=$lo{g}_{a}\frac{{x}_{1}{x}_{2}+2({x}_{1}-{x}_{2})-4}{{x}_{1}{x}_{2}-2({x}_{1}-{x}_{2})-4}$
∴2<x1<x2,∴0<2x1x2+2(x1-x2)-4<x1x2-(x1-x2)-4,
∵a>1,∴f(x2)<f(x1
所以:函數(shù)f(x)在(2,+∞)上的單調(diào)減函數(shù).
(3)由(1)得$f(x)=lo{g}_{a}\frac{x+2}{x-2}$,
∴$\frac{2+x}{x-2}>0$得,函數(shù)f(x)的定義域?yàn)椋?∞,-2)∪(2,+∞)
又∵$\frac{x+2}{x-2}≠1$,得f(x)∈(-∞,0)∪(0,+∞)
令f(x)=1,則$\frac{x+2}{x-2}$=,解得:$x=\frac{2+2a}{a-1}$.
所以:f($\frac{2+2a}{a-1}$)=1
當(dāng)a>1時(shí),$\frac{2+2a}{a-1}$>2,此時(shí)f(x)在在(2,+∞)上的單調(diào)減函數(shù).
所以:當(dāng)x∈(2,$\frac{2+2a}{a-1}$)時(shí),得f(x)∈1,+∞);
由題意:r=2,那么a-2=$\frac{2+2a}{a-1}$,解得:a=5.
所以:當(dāng)x∈(r,a-2),f(x)的取值范圍恰為(1,+∞)時(shí),a和r的值分別為5和2.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的性質(zhì)及運(yùn)用,單調(diào)性的證明以及求定義域和值域的對(duì)應(yīng)關(guān)系.屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)f(x)=$\sqrt{x+1}$+$\sqrt{1-x}$+x的定義域是[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.計(jì)算lg5+lg0.2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸是x軸,并且頂點(diǎn)到準(zhǔn)線的距離等于2.
(1)求這個(gè)拋物線的標(biāo)準(zhǔn)方程;
(2)當(dāng)拋物線開口向右時(shí),直線y=x+m與拋物線交于兩不同的點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.用反證法證明:在△ABC中,若∠C是直角,則∠B一定是銳角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.210(6) 化成十進(jìn)制數(shù)為78(10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.log23•log34的值為( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知數(shù)列{an}中,前6項(xiàng)構(gòu)成首項(xiàng)為2公差為-2的等差數(shù)列,第7項(xiàng)至第12項(xiàng)構(gòu)成的首項(xiàng)和公比均為$\frac{1}{2}$的等比數(shù)列,又對(duì)任意的n∈N*,都有an+12=an成立,數(shù)列{an}的前n項(xiàng)和為Sn,則S27+2a12等于(  )
A.-36B.-34C.-36-$\frac{1}{{2}^{5}}$D.-34-$\frac{1}{{2}^{5}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{2x+1}{x+1}$,
(1)判斷并用定義證明函數(shù)f(x)在區(qū)間(-1,+∞)上的單調(diào)性;
(2)求該函數(shù)在區(qū)間[1,4]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案