已知函數(shù)f(x)=loga
3+x
3-x
(a>0,a≠1),其定義域?yàn)椋?1,1),試證明f(x)為奇函數(shù).
考點(diǎn):函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的定義域關(guān)于原點(diǎn)對稱,且f(-x)=-f(x),可得函數(shù)f(x)為奇函數(shù).
解答: 證明:由于函數(shù)f(x)=loga
3+x
3-x
(a>0,a≠1),其定義域?yàn)椋?1,1),關(guān)于原點(diǎn)對稱,
且f(-x)=loga
3-x
3+x
=-loga
3+x
3-x
=-f(x),故函數(shù)f(x)為奇函數(shù).
點(diǎn)評:本題主要考查函數(shù)的奇偶性的判斷和證明,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x||x|≤2,x∈R},B=y|y=-x2,x∈R},則A∩B=(  )
A、{x|0≤x≤2}
B、{x|x≤2}
C、{x|-2≤x≤0}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

張老師為了調(diào)查全校學(xué)生對地震防災(zāi)知識的掌握程度,設(shè)置了三個問題,每班隨機(jī)選一人,共25位學(xué)生回答問題,結(jié)果發(fā)現(xiàn):
(1)每個學(xué)生至少回答了一個問題;
(2)在所有沒有回答第一個問題的學(xué)生中,回答第二個問題的人數(shù)是回答第三個問題的人數(shù)的2倍;
(3)只回答第一個問題的學(xué)生比余下學(xué)生中回答第一個問題的人數(shù)多1;
(4)只回答一個問題的學(xué)生中,有一半沒有回答第一個問題;
問共有多少名學(xué)生只回答了第二個問題?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過雙曲線x2-y2=8的右焦點(diǎn)且斜率為2的直線被雙曲線截得的線段的長是(  )
A、
4
10
3
B、7
2
C、2
10
D、
20
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:(a 
8
5
×b 
6
5
 
1
2
÷(3a 
4
5
)÷b 
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=lg(1-2sinx)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=loga(3x-1)(a>0,a≠1)的圖象過定點(diǎn)( 。
A、(
2
3
,1)
B、(-1,0)
C、(
2
3
,0)
D、(0,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種有獎銷售的飲料,瓶蓋內(nèi)印有“再來一瓶”或“謝謝惠顧”字樣,購買一瓶若其瓶蓋內(nèi)印有“再來一瓶”字樣即為中獎,中獎概率為
1
5
.甲、乙、丙三位同學(xué)每人購買了一瓶該飲料.
(1)求甲、乙都中獎且丙沒有中獎的概率;
(2)求中獎人數(shù)ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊與
5
12
π角的終邊關(guān)于x軸對稱,且α∈[3π,5π],α=
 

查看答案和解析>>

同步練習(xí)冊答案