【題目】已知函數(shù)f(x)=x+ (x>0,m>0)和函數(shù)g(x)=a|x﹣b|+c(x∈R,a>0,b>0).問:
(1)證明:f(x)在( ,+∞)上是增函數(shù);
(2)把函數(shù)g1(x)=|x|和g2(x)=|x﹣1|寫成分段函數(shù)的形式,并畫出它們的圖象,總結出g2(x)的圖象是如何由g1(x)的圖象得到的.請利用上面你的結論說明:g(x)的圖象關于x=b對稱;
(3)當m=1,b=2,c=0時,若f(x)>g(x)對于任意的x>0恒成立,求a的取值范圍.
【答案】
(1)證明:在 內任取兩個實數(shù)x1,x2,且x1<x2,則△x=x2﹣x1>0, ,
因為 , ,所以x1x2>m>0,又有x2﹣x1>0,所以△y>0,
所以f(x)在 是增函數(shù)
(2)解: , ;
g2(x)的圖象是由g1(x)的圖象向右平移1個單位得到的,
先考慮函數(shù)h(x)=a|x|+c(x∈R,b>0),
在h(x)的定義域內任取一個實數(shù)x,則﹣x也在其定義域內,
因為h(﹣x)=a|﹣x|+c=a|x|+c=h(x),所以函數(shù)h(x)是偶函數(shù),
即其圖象的對稱軸為x=0,
由上述結論,g(x)的圖象是由h(x)的圖象向右平移b個單位得到,
所以g(x)的圖象關于x=b對稱.
(3)解:由題意可知 對于任意的x>0恒成立.
當x≥2時,不等式化為 ,
即(a﹣1)x2﹣2ax﹣1<0對于任意x≥2恒成立,
當a﹣1=0時,即a=1,不等式化為2x+1>0,滿足題意;
當a﹣1≠0時,由題意 進而對稱軸 ,
所以(a﹣1)22﹣2a2﹣1<0,解得0<a<1;
結合以上兩種情況0<a≤1.
當0<x<2時,不等式 ,
即(a+1)x2﹣2ax+1>0對于任意0<x<2恒成立,
由題意 進而對稱軸 ,
所以△=4a2﹣4(a+1)<0,即a2﹣a﹣1<0,解得 ,
所以 .
綜上所述,a的取值范圍為(0,1].
【解析】(1)利用函數(shù)單調性的定義可直接證明f(x)在 是增函數(shù).;(2)由題意知g2(x)的圖象是由g1(x)的圖象向右平移1個單位得到的;根據(jù)函數(shù)的性質與平移可證明g(x)的圖象關于x=b對稱;(3)利用轉化思想:由題意可知 對于任意的x>0恒成立.當x≥2時,不等式化為 ,
即(a﹣1)x2﹣2ax﹣1<0對于任意x≥2恒成立.
【考點精析】掌握利用導數(shù)研究函數(shù)的單調性是解答本題的根本,需要知道一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax+lnx(a∈R). (Ⅰ)若a=2,求曲線y=f(x)在x=1處切線的斜率;
(Ⅱ)求f(x)的單調區(qū)間;
(Ⅲ)設g(x)=x2﹣2x+2,若對任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設平面內有n條直線(n≥3),其中有且僅有兩條直線互相平行,任意三條直線不過同一點.若用f(n)表示這n條直線交點的個數(shù),當n>4時,f(n)= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設x∈R,[x]表示不超過x的最大整數(shù),若存在實數(shù)t,使得[t]=1,[t2]=2,…,[tn]=n同時成立,則正整數(shù)n的最大值是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=x3﹣ x2+bx+c在x=1時取得極值,且當x∈[﹣1,2]時,f(x)<c2恒成立.
(1)求實數(shù)b的值;
(2)求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1).選修4—1:幾何證明選講
如圖,CD是圓O的切線,切點為D,CA是過圓心O的割線且交圓O于點B,DA=DC.求證: CA=3CB.
(2).選修4—2:矩陣與變換
設二階矩陣A=.
(Ⅰ)求A-1;
(Ⅱ)若曲線C在矩陣A對應的變換作用下得到曲線C:6x2-y2=1,求曲線C的方程.
(3).選修4—4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),圓C的參數(shù)方程為(θ為參數(shù)).若直線l與圓C相切,求實數(shù)a的值.
(4).選修4—5:不等式選講
解不等式:|x-2|+|x+1|≥5.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分10分)已知等差數(shù)列{an}滿足a1+a2=10,a4-a3=2.
(1)求{an}的通項公式.
(2)設等比數(shù)列{bn}滿足b2=a3,b3=a7.問:b6與數(shù)列{an}的第幾項相等?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產甲,乙兩種芯片,其質量按測試指標劃分為:指標大于或等于82為合格品,小于82為次品.現(xiàn)隨機抽取這兩種芯片各100件進行檢測,檢測結果統(tǒng)計如下:
測試指標 | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
芯片甲 | 8 | 12 | 40 | 32 | 8 |
芯片乙 | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計芯片甲,芯片乙為合格品的概率;
(2)生產一件芯片甲,若是合格品可盈利40元,若是次品則虧損5元;生產一件芯片乙,若是合格品可盈利50元,若是次品則虧損10元.在(1)的前提下,記X為生產1件芯片甲和1件芯片乙所得的總利潤,求隨機變量X的分布列及生產1件芯片甲和1件芯片乙所得總利潤的平均值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com