考點:數(shù)學歸納法,歸納推理
專題:綜合題,點列、遞歸數(shù)列與數(shù)學歸納法
分析:(1)依題意,計算f
2(x)=f
1[f
1(x)]可求得f
2(x),同理可求f
3(x);
(2)由(1)可猜想
fn(x)=,然后用數(shù)學歸納法證明即可.
解答:
解:(1)
f2(x)=f1[f1(x)]==---------------------1
f3(x)=f1[f2(x)]==---------------------1
猜想:
fn(x)=,(n∈N
*)---------------------2
(2)下面用數(shù)學歸納法證明
fn(x)=,(n∈N
*)
①當n=1時,
f1(x)=,顯然成立;--------------------1
②假設(shè)當n=k(k∈N
*)時,猜想成立,即
fk(x)=,--------------------1
則當n=k+1時,
fk+1(x)=f1[fk(x)]==即對n=k+1時,猜想也成立;
結(jié)合①②可知,猜想
fn(x)=對一切n∈N
*都成立.--------------------2
點評:本題考查歸納推理,著重考查數(shù)學歸納法的應(yīng)用,突出考查推理證明的能力,屬于中檔題.