已知橢圓數(shù)學公式過點數(shù)學公式,且離心率e=數(shù)學公式
(Ⅰ)求橢圓方程;
(Ⅱ)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點M、N,且線段MN的垂直平分線過定點數(shù)學公式,求k的取值范圍.

解:(Ⅰ)由題意橢圓的離心率∴∴a=2c∴b2=a2-c2=3c2
∴橢圓方程為又點在橢圓上∴∴c2=1
∴橢圓的方程為…(4分)
(Ⅱ)設(shè)M(x1,y1),N(x2,y2)由
消去y并整理得(3+4k2)x2+8kmx+4m2-12=0…(6分)
∵直線y=kx+m與橢圓有 兩個交點△=(8km)2-4(3+4k2)(4m2-12)>0,即m2<4k2+3…(8分)
∴MN中點P的坐標為…(9分)
設(shè)MN的垂直平分線l'方程:
∵p在l'上∴即4k2+8km+3=0
…(11分)
將上式代入得

,∴k的取值范圍為
分析:(Ⅰ)由題意知橢圓的離心率,故橢圓方程為,又點在橢圓上,由此能導出橢圓的方程.
(Ⅱ)設(shè)M(x1,y1),N(x2,y2),由,消去y并整理得(3+4k2)x2+8kmx+4m2-12=0,由直線y=kx+m與橢圓有兩個交點,知m2<4k2+3.又,知MN中點P的坐標為,由此能求出k的范圍.
點評:本題考查橢圓方程和k的取值范圍,解題時要認真審題,仔細解答,注意橢圓的靈活運用,合理地進行等價轉(zhuǎn)化.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點,且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:數(shù)學公式+數(shù)學公式=1,(a>b>0)與雙曲4x2-數(shù)學公式y2=1有相同的焦點,且橢C的離心e=數(shù)學公式,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年安徽省淮北市高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年安徽省淮南市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年安徽省淮北市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

同步練習冊答案