19.已知函數(shù)$f(x)=\frac{a}{{{a^2}-1}}({{a^x}-{a^{-x}}})$,其中a>0且a≠1.
(1)當(dāng)x∈(-∞,2)時(shí),f(x)-4的值恒為負(fù),求a的取值范圍;
(2)若函數(shù)y=f(x)的定義域?yàn)椋?1,1),求滿足不等式f(1-m)+f(1-m2)<0的實(shí)數(shù)m的取值集合.

分析 (1)要使f(x)-4的值恒為負(fù),只要f(2)-4≤0,即 $\frac{{a}^{2}+1}{a}$≤4,由此求得a的范圍;
(2)由題意可得 f(1-m)<-f(1-m2)=f(m2-1),得到關(guān)于m的不等式組,解出即可.

解答 解:(1)由于函數(shù)f(x)在(-∞,2)上單調(diào)遞增,要使f(x)-4的值恒為負(fù),
只要f(2)-4≤0,即 $\frac{a}{{a}^{2}-1}$(a2-a-2)-4≤0,即$\frac{{a}^{2}+1}{a}$≤4,
解得 2-$\sqrt{3}$≤a≤2+$\sqrt{3}$,且a≠1,即a的范圍[2-$\sqrt{3}$,1)、(1,2+$\sqrt{3}$].
(2)由于函數(shù)y=f(x)的定義域?yàn)椋?1,1),
故由不等式f(1-m)+f(1-m2)<0,
可得 f(1-m)<-f(1-m2)=f(m2-1),
∴$\left\{\begin{array}{l}{-1<1-m<1}\\{-1<1{-m}^{2}<1}\\{1-m{<m}^{2}-1}\end{array}\right.$,解得 1<m<$\sqrt{2}$.

點(diǎn)評(píng) 本題主要考查函數(shù)的單調(diào)性和奇偶性,利用函數(shù)的單調(diào)性解不等式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0};若B∩A=B,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,焦距為2,離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)設(shè)直線l經(jīng)過點(diǎn)M(0,1),且與橢圓C交于A,B兩點(diǎn),若$|AB|=\frac{{3\sqrt{5}}}{2}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,則下列命題正確的是( 。
A.若α⊥γ,α⊥β,則γ∥βB.若m∥n,m?α,n?β,則α∥β
C.若α⊥β,m⊥β,則m∥αD.若m∥n,m⊥α,n⊥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.用m,n表示兩條不同的直線,α,β表示兩個(gè)不同的平面,給出下列命題:
①若m⊥n,m⊥α,則n∥α; 
②若m∥α,α⊥β則m⊥β;
③若m⊥β,α⊥β,則m∥α;
④若m⊥n,m⊥α,n⊥β,則α⊥β,
其中,正確命題是( 。
A.①②B.②③C.③④D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=-x2+2x,x∈[-1,3],則任取一點(diǎn)x0∈[-1,3],使得f(x0)≥0的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.對(duì)于下列命題:
①若命題p:?x∈R,使得tanx<x,命題q:?x∈R+,lg2x+lgx+1>0則命題“p且?q”是真命題;
②若隨機(jī)變量ξ~B(n,p),Eξ=6,Dξ=3,則$P(ξ=1)=\frac{3}{4}$
③“l(fā)gx,lgy,lgz成等差數(shù)列”是“y2=xz”成立的充要條件;
④已知ξ服從正態(tài)分布N(1,22),且P(-1≤ξ<1)=0.3,則P(ξ≥3)=0.2
其中真命題的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an}為等差數(shù)列,若a3+a11=24,a4=3,則數(shù)列{an}的通項(xiàng)公式為an=3n-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在等差數(shù)列{an}中,公差d=2,a2是a1與a4的等比中項(xiàng).
(1)求an;
(2)設(shè)bn=(-1)n•2${\;}^{{a}_{n}}$,n∈N*,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案