分析 (1)要使f(x)-4的值恒為負(fù),只要f(2)-4≤0,即 $\frac{{a}^{2}+1}{a}$≤4,由此求得a的范圍;
(2)由題意可得 f(1-m)<-f(1-m2)=f(m2-1),得到關(guān)于m的不等式組,解出即可.
解答 解:(1)由于函數(shù)f(x)在(-∞,2)上單調(diào)遞增,要使f(x)-4的值恒為負(fù),
只要f(2)-4≤0,即 $\frac{a}{{a}^{2}-1}$(a2-a-2)-4≤0,即$\frac{{a}^{2}+1}{a}$≤4,
解得 2-$\sqrt{3}$≤a≤2+$\sqrt{3}$,且a≠1,即a的范圍[2-$\sqrt{3}$,1)、(1,2+$\sqrt{3}$].
(2)由于函數(shù)y=f(x)的定義域?yàn)椋?1,1),
故由不等式f(1-m)+f(1-m2)<0,
可得 f(1-m)<-f(1-m2)=f(m2-1),
∴$\left\{\begin{array}{l}{-1<1-m<1}\\{-1<1{-m}^{2}<1}\\{1-m{<m}^{2}-1}\end{array}\right.$,解得 1<m<$\sqrt{2}$.
點(diǎn)評(píng) 本題主要考查函數(shù)的單調(diào)性和奇偶性,利用函數(shù)的單調(diào)性解不等式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若α⊥γ,α⊥β,則γ∥β | B. | 若m∥n,m?α,n?β,則α∥β | ||
C. | 若α⊥β,m⊥β,則m∥α | D. | 若m∥n,m⊥α,n⊥β,則α∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ③④ | D. | ④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com