設(shè)定義域為的函數(shù)
(Ⅰ)在平面直角坐標(biāo)系內(nèi)作出函數(shù)的圖象,并指出的單調(diào)區(qū)間(不需證明);
(Ⅱ)若方程有兩個解,求出的取值范圍(只需簡單說明,不需嚴(yán)格證明).
(Ⅲ)設(shè)定義為的函數(shù)為奇函數(shù),且當(dāng)時,求的解析式.
(Ⅰ)作圖歲詳解.單增區(qū)間:,,單減區(qū)間, ;(Ⅱ)或;(Ⅲ).
解析試題分析:(Ⅰ)利用一次函數(shù)、二次函數(shù)的圖象及對稱性可作出圖象,然后根據(jù)圖象可寫單調(diào)區(qū)間;(Ⅱ)考慮直線與函數(shù)的圖象只有兩個交點(diǎn)時,寫出滿足的條件;(Ⅲ)當(dāng)時,,由此可得到的解析式,然后利用函數(shù)奇偶性可求得的解析式,又由奇函數(shù)的特性易知,進(jìn)而可求得的解析式.
試題解析:(Ⅰ)如圖.
單增區(qū)間:,,單減區(qū)間, .
(Ⅱ)在同一坐標(biāo)系中同時作出圖象,由圖可知有兩個解,
須或,即或.
(Ⅲ)當(dāng)時,,
因為為奇函數(shù),所以,
且,所以.
考點(diǎn):1、分段函數(shù)的圖象;2、函數(shù)單調(diào)性及奇偶性.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=2x-,x∈(0,1].
(1)當(dāng)a=-1時,求函數(shù)y=f(x)的值域;
(2)若函數(shù)y=f(x)在x∈(0,1]上是減函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=loga(x+1)(a>1),若函數(shù)y=g(x)的圖象上任意一點(diǎn)P關(guān)于原點(diǎn)對稱的點(diǎn)Q的軌跡恰好是函數(shù)f(x)的圖象.
(1)寫出函數(shù)g(x)的解析式;
(2)當(dāng)x∈[0,1)時總有f(x)+g(x)≥m成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)若,判斷函數(shù)的奇偶性,并加以證明;
(2)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(3)若存在實(shí)數(shù)使得關(guān)于的方程有三個不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng),函數(shù)有且僅有一個零點(diǎn),且時,求的值;
(Ⅱ)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(其中是實(shí)數(shù)常數(shù),)
(1)若,函數(shù)的圖像關(guān)于點(diǎn)(—1,3)成中心對稱,求的值;
(2)若函數(shù)滿足條件(1),且對任意,總有,求的取值范圍;
(3)若b=0,函數(shù)是奇函數(shù),,,且對任意時,不等式恒成立,求負(fù)實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3+ax-2,(aR).
(l)若f(x)在區(qū)間(1,+)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若,且f(x0)=3,求x0的值;
(3)若,且在R上是減函數(shù),求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
是定義在上的函數(shù)
(1)判斷函數(shù)的奇偶性;
(2)利用函數(shù)單調(diào)性的定義證明:是其定義域上的增函數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com