(理)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AB=2,PA=AD=4,以BD的中點(diǎn)O為球心、BD為直徑的球面交PD于點(diǎn)M.

(1)求證:平面ABM⊥平面PCD;

(2)求點(diǎn)O到平面ABM的距離.

答案:
解析:

  證明:(1)由題意,在以為直徑的球面上,

  則

  平面,則

  又平面,

  ∴,

  平面

  ∴平面平面. (3分)

  (2)∵的中點(diǎn),則點(diǎn)到平面的距離等于點(diǎn)到平面的距離的一半,由(1)知,平面,則線段的長就是點(diǎn)到平面的距離. (5分)

  ∵在中,

  ∴的中點(diǎn), (7分)

  則點(diǎn)到平面的距離為 (8分)

  (其它方法可參照上述評(píng)分標(biāo)準(zhǔn)給分)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年臨沭縣模塊考試?yán)恚?2分)

       如圖,在四棱錐SABCD中,底面ABCD是邊長為1的菱形,∠ABC=,SA⊥底面

       ABCD,SA=2,M 的為SA的中點(diǎn),N在線段BC上。

   (Ⅰ)當(dāng)為何值時(shí),MN∥平面SCD;(說明理由)。

   (Ⅱ)求MD和平面SCD所成角的正弦值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年西工大附中理)如圖,在四棱錐中,底面是一直角梯形,,,,且平面,與底面成角.

(Ⅰ) 求證:平面平面;

(Ⅱ) 求二面角的大。

      (Ⅲ) 若,為垂足,求異面直線所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(06年重慶卷理)(13分)

 如圖,在四棱錐中,底面ABCD,為直角,,E、F分別為、中點(diǎn)。

     (I)試證:平面;

     (II)高,且二面角 的平面角大小,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年重點(diǎn)中學(xué)模擬理)  (12分)如圖,在四棱錐P―ABCD中,PA⊥平面ABCD,四邊形ABCD為直角梯形,AD//BC且AD>BC,∠DAB=∠ABC=90°,PA=,AB=BC=1。M為PC的中點(diǎn)。

   (1)求二面角M―AD―C的大。

   (2)如果∠AMD=90°,求線段AD的長。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(04年天津卷理)(12分)

   如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn),作交PB于點(diǎn)F。

      (I)證明 平面;

      (II)證明平面EFD;

      (III)求二面角的大小。

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案