已知A、B、C三點(diǎn)不共線,點(diǎn)O為平面ABC外的一點(diǎn),則下列條件中,能得到M∈平面ABC的充分條件是( 。
分析:在空間,點(diǎn)M在平面ABC內(nèi)的充要條件是存在α、β、γ,使
OM
OA
OB
OC
且α+β+γ=1.由此公式不難判斷哪一項(xiàng)是符合題意的選項(xiàng).
解答:解:對(duì)于B項(xiàng),∵
OM
=
1
3
OA
-
1
3
OB
+
OC
,
OM
-
OC
=
1
3
(
OA
-
OB
)
,可得
CM
=
1
3
BA
,
即直線CM與AB互相平行,故點(diǎn)M在平面ABC內(nèi)
又∵A項(xiàng)
OM
=
1
2
OA
+
1
2
OB
+
1
2
OC
,且
1
2
+
1
2
+
1
2
=
3
2
≠1
∴A項(xiàng)中的M點(diǎn)不在平面ABC內(nèi).同理可得C、D中的M點(diǎn)均不在平面ABC內(nèi)
故選B
點(diǎn)評(píng):本題給出關(guān)于向量
OM
的幾個(gè)線性表達(dá)式,叫我們判斷能使點(diǎn)M∈平面ABC的充分條件,著重考查了利用空間向量判斷四點(diǎn)共面的方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C三點(diǎn)不共線,且點(diǎn)O滿(mǎn)足
OA
+
OB
+
OC
=0
,則下列結(jié)論正確的是( 。
A、
OA
=
1
3
AB
+
2
3
BC
B、
OA
=
2
3
AB
+
1
3
BC
C、
OA
=-
1
3
AB
-
2
3
BC
D、
OA
=-
2
3
AB
-
1
3
BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C三點(diǎn)不共線,O是平面ABC外的任一點(diǎn),下列條件中能確定點(diǎn)M與點(diǎn)A、B、C一定共面的是( 。
A、
OM
=
OA
+
OB
+
OC
B、
OM
=2
OA
-
OB
-
OC
C、
OM
=
OA
+
1
2
OB
+
1
3
OC
D、
OM
=
1
3
OA
+
1
3
OB
+
1
3
OC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C三點(diǎn)不共線,M、A、B、C四點(diǎn)共面,則對(duì)平面ABC外的任一點(diǎn)O,有
OM
=
1
2
OA
+
1
3
OB
+t
OC
,則t=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B,C三點(diǎn)不共線,對(duì)平面ABC外一點(diǎn)O,給出下列命題:
OM
=
1
3
OA
+
1
3
OB
+
1
3
OC
;       ②
OM
=
OA
-
OB
+
OC
;
OM
=
OA
+2
OB
+
AC
;          ④
OM
=2
OA
+
OB
+
AC

其中,能推出M,A,B,C四點(diǎn)共面的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B,C三點(diǎn)不共線,點(diǎn)O是平面ABC外一點(diǎn),則在下列條件中,能得到點(diǎn)M與A,B,C一定共面的一個(gè)條件為
. (填序號(hào))
OM
=
1
2
OA
+
1
2
OB
+
1
2
OC
;②
OM
=2
OA
-
OB
-
OC
;
OM
=
OA
+
OB
+
OC
;④
OM
=
1
3
OA
-
1
3
OB
+
OC

查看答案和解析>>

同步練習(xí)冊(cè)答案