(2008•如東縣三模)設(shè)函數(shù)f(x)=lg(
2
x+1
-1)
的定義域?yàn)榧螦,函數(shù)g(x)=
1-|x+a|
的定義域?yàn)榧螧.
(1)判定函數(shù)f(x)的奇偶性,并說明理由.
(2)問:a≥2是A∩B=∅的什么條件(充分非必要條件、必要非充分條件、充要條件、既非充分也非必要條件)?并證明你的結(jié)論.
分析:(1)求出集合A的定義域,利用函數(shù)的單調(diào)性判斷f(x)的單調(diào)性即可.
(2)求出集合B,利用A∩B=∅,判斷a≥2與a<2時(shí)A與B的關(guān)系,利用充要條件判斷方法判斷即可.
解答:解:(1)A={x|
2
x+1
-1>0
2
x+1
-1>0
?
x-1
x+1
<0

?(x+1)(x-1)<0,∴-1<x<1
∴A=(-1,1),定義域關(guān)于原點(diǎn)對(duì)稱
f(-x)=lg
1+x
-x+1
=lg(
1-x
1+x
)
-1
=-lg
1-x
1+x
=-f(x),∴f(x)是奇函數(shù).
(2)B={x|1-|x+a|≥0}
|x+a|≤1?-1≤x+a≤1?-1-a≤x≤1-a,
B=[-1-a,1-a]
當(dāng)a≥2時(shí),-1-a≤-3,1-a≤-1,
由A=(-1,1),B=[-1-a,1-a],A∩B=∅,
反之,若A∩B=∅,可取-a-1=2,則a=-3,a小于2.(注:反例不唯一)
所以,a≥2是A∩B=∅,的充分非必要條件.
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性的應(yīng)用,集合的交集與充要條件的關(guān)系,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•如東縣三模)函數(shù)y=loga(x-1)+1(a>0,且a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在一次函數(shù)y=mx+n的圖象上,其中mn>0,則
1
m
+
2
n
的最小值為
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•如東縣三模)(理)若直線y=kx+1與圓x2+y2+kx+my-4=0交于M、N兩點(diǎn),并且M、N關(guān)于直線x+y=0對(duì)稱,則不等式組
kx-y+1≥0
kx-my≤0
y≥0
表示的平面區(qū)域的面積是
1
4
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•如東縣三模)設(shè)sinα=
3
5
π
2
<a<π
),tan(π-β)=
1
2
,則tan(α-2β)的值為
7
24
7
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•如東縣三模)(文)不等式組
y≤x+1
y≥0
x+y≤0
表示的平面區(qū)域的面積是
1
4
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•如東縣三模)設(shè)函數(shù)f(x)的定義域?yàn)镽,若存在常數(shù)k>0,使|f(x)|≤
k
2010
|x|對(duì)一切實(shí)數(shù)x均成立,則稱f(x)為“誠毅”函數(shù).給出下列函數(shù):
①f(x)=x2;  
②f(x)=sinx+cosx;  
③f(x)=
x
x2+x+1
;  
④f(x)=3x+1;
其中f(x)是“誠毅”函數(shù)的序號(hào)為

查看答案和解析>>

同步練習(xí)冊(cè)答案