2.在四棱錐F-ABCD中,底面ABCD是平行四邊形,AB=4,AD=8,∠BAD=60°,F(xiàn)A⊥平面ABCD且FA=12,點(diǎn)E在FA上,F(xiàn)C∥平面BED,
(1)求$\frac{FE}{AE}$的值;
(2)求A到平面BED的距離.

分析 (1)推導(dǎo)出四邊形ABCD是平行四邊形,從而得到E是FA的中點(diǎn),由此能求出$\frac{FE}{AE}=1$.
(2)推導(dǎo)出BD⊥BE,由VA-BED=VE-ABD,能求出A到平面BED的距離.

解答 解:(1)∵FC∥平面BED,平面FCA∩平面BED=EO(AC與BD交于點(diǎn)O),
∴FC∥EO,
∵四邊形ABCD是平行四邊形,
∴O是AC的中點(diǎn),
∴E是FA的中點(diǎn),
∴$\frac{FE}{AE}=1$.…(6分)
(2)∵AB=4,AD=8,∠BAD=60°,∴由余弦定理有$BD=4\sqrt{3}$,…(8分)
且BD⊥AB,又∵BD⊥FA,F(xiàn)A∩AB=A,
∴BD⊥平面FAB,∴BD⊥BE,
記A到平面BED的距離為h,
∴${S_{△ABD}}=\frac{1}{2}×4×8×sin{60°}=8\sqrt{3},AE=\frac{1}{2}AF=6,BE=\sqrt{A{E^2}+A{B^2}}=2\sqrt{13}$,
由VA-BED=VE-ABD得$\frac{1}{3}{S_{△BED}}•h=\frac{1}{3}{S_{△ABD}}•AE$,
即$\frac{1}{3}×\frac{1}{2}×4\sqrt{3}×2\sqrt{13}×h=\frac{1}{3}×8\sqrt{13}×6$,
解得$h=\frac{{12\sqrt{13}}}{13}$,
∴A到平面BED的距離為$\frac{12\sqrt{13}}{13}$.…(12分)

點(diǎn)評(píng) 本題考查兩線段比值的求法,考查點(diǎn)到平南的距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知冪函數(shù)$f(x)={x^{-{m^2}+2m+3}}$在(0,+∞)上為增函數(shù),則m的取值范圍是(-1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)$\frac{{{{(2+i)}^2}}}{i}$(其中i為虛數(shù)單位)的虛部等于( 。
A.3B.-3C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為CD和C1C的中點(diǎn),則直線AE與D1F所成角的余弦值為( 。
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{3}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.cos390°=( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知M(1,4),N(3,2)為圓C上的兩點(diǎn),且直線2x-3y+6=0為圓C的一條對(duì)稱軸.
(1)求過點(diǎn)(5,1)且與圓C相切的直線方程;
(2)若過點(diǎn)P(1,0)的直線l與圓C相交所得的弦的中點(diǎn)為A,與直線m:x+2y+2=0的交點(diǎn)為B,試判斷|PA|•|PB|是否為定值?若是,則求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左頂點(diǎn)與拋物線y2=2px(p>0)的焦點(diǎn)的距離為4,且雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點(diǎn)坐標(biāo)為(-2,-1),則雙曲線的標(biāo)準(zhǔn)方程為( 。
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{x^2}{8}-\frac{y^2}{4}=1$C.$\frac{x^2}{4}-{y^2}=1$D.$\frac{x^2}{2}-{y^2}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比數(shù)列.?dāng)?shù)列$\{\frac{b_n}{a_n}\}$是首項(xiàng)為1公比為2的等比數(shù)列,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{bn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.化簡(2a-3b-${\;}^{\frac{2}{3}}$)•(-3a-1b)÷(4a-4b-${\;}^{\frac{5}{3}}$)得-$\frac{3}{2}$b2

查看答案和解析>>

同步練習(xí)冊答案