20.已知直線y=x+a與曲線$y=\sqrt{2-{x^2}}$的兩個(gè)不同的交點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(-2,2)B.(0,2)C.$({\sqrt{2},2})$D.$[{\sqrt{2},2})$

分析 根據(jù)直線和圓的位置關(guān)系即可得到結(jié)論.利用特殊位置進(jìn)行研究即可.

解答 解:曲線$y=\sqrt{2-{x^2}}$線是以(0,0)為圓心,$\sqrt{2}$為半徑位于x軸上方的半圓.
當(dāng)直線l過點(diǎn)A(-$\sqrt{2}$,0)時(shí),直線l與曲線有兩個(gè)不同的交點(diǎn),
此時(shí)0=-$\sqrt{2}$+a,解得a=$\sqrt{2}$.
當(dāng)直線l與曲線相切時(shí),直線和圓有一個(gè)交點(diǎn),
圓心(0,0)到直線x-y+a=0的距離d=$\frac{|a|}{\sqrt{2}}$=$\sqrt{2}$
解得a=2或-2(舍去),
若曲線C和直線l有且僅有兩個(gè)不同的交點(diǎn),
則直線l夾在兩條直線之間,
因此$\sqrt{2}$≤a<2,
故選D.

點(diǎn)評(píng) 本題主要考查直線和圓的位置關(guān)系的應(yīng)用,考查點(diǎn)到直線的距離公式的運(yùn)用,考查學(xué)生的計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知命題p:對(duì)任意x∈R,有cosx≤1,則( 。
A.¬p:存在x∈R,使cosx>1B.¬p:對(duì)任意x∈R,有cosx>1
C.¬p:存在x∈R,使cosx≥1D.¬p:對(duì)任意x∈R,有cosx≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0)f(x)=Asin(ωx+φ)的部分圖象如圖所示,下列說法正確的是(  )
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)的圖象關(guān)于點(diǎn)$({-\frac{5π}{12},0})$對(duì)稱
C.將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位得到的函數(shù)圖象關(guān)于y軸對(duì)稱
D.函數(shù)f(x)的單調(diào)遞增區(qū)間是$[{kπ+\frac{7π}{12},kπ+\frac{13π}{12}}],k∈Z$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.“0≤a<2”是“ax2+2ax+1>0的解集是實(shí)數(shù)集R”的(  )
A.充分而非必要條件B.必要而非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知點(diǎn)P(1,3),點(diǎn)Q(-1,2),點(diǎn)M為直線x-y+1=0上一動(dòng)點(diǎn),則|PM|+|QM|的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.等比數(shù)列{an}中,an∈R+,a4•a5=32,則log2a1+log2a2+…+log2a8的值為(  )
A.10B.20C.36D.128

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知直線xcosθ-y+2=0,(θ∈R)的傾斜角為α,則α的取值范圍為$[0,\frac{π}{4}]∪[\frac{3π}{4},π)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.三月植樹節(jié),林業(yè)管理部門在植樹前,為了保證樹苗的質(zhì)量,都會(huì)在植樹前對(duì)樹苗進(jìn)行檢測(cè),現(xiàn)從甲、乙兩種樹苗中各抽測(cè)了10株樹苗,量出它們的高度如下(單位:厘米):
甲:37,21,31,25,29,19,32,28,25,33;
乙:10,30,47,27,46,14,26,10,44,46;
(1)畫出兩組數(shù)據(jù)的莖葉圖,并根據(jù)莖葉圖對(duì)乙兩種樹苗的高度作比較,寫出兩個(gè)統(tǒng)計(jì)結(jié)論;
(2)設(shè)抽測(cè)的10株甲種樹苗高度平均值為$\overline{x}$,將這10株樹苗的高度依次輸入,按程序框(如圖)進(jìn)行運(yùn)算,問輸出的S大小為多少?并說明S的統(tǒng)計(jì)學(xué)意義.
(3)若樹苗的合格高度為31(厘米),則乙種樹苗高度合格的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.等比數(shù)列{an}的前n項(xiàng)和為Sn,若a3=$\frac{3}{2}$,S3=$\frac{9}{2}$求a1與q.

查看答案和解析>>

同步練習(xí)冊(cè)答案