若f(x)=|x+1|-|x-1|,則f(x)值域?yàn)椋ā 。?/div>
分析:先將解析式化簡(jiǎn),是一個(gè)分段函數(shù),再求各段上的值域,求并集即可.
解答:解:f(x)=|x+1|-|x-1|=
當(dāng)-1<x<1時(shí),f(x)單調(diào)遞增,值域?yàn)椋?2,2),
所以函數(shù)f(x)的值域?yàn)椋?2,2)∪{-2}∪{2}=[-2,2],
故答案為B.
點(diǎn)評(píng):本題考查分段函數(shù)的值域,關(guān)鍵是找出界點(diǎn)寫出函數(shù)的解析式來(lái).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
設(shè)函數(shù)f(x)=a
2x
2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
,求a的值;
(2)關(guān)于x的不等式(x-1)
2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)
a=,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知下列命題:
①若f(x)為減函數(shù),則-f(x)為增函數(shù);
②若f(0)<f(4),則函數(shù)f(x)不是R上的減函數(shù);
③若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,4];
④設(shè)函數(shù)f(x)是在區(qū)間[a,b]上圖象連續(xù)的函數(shù),且f(a)•f(b)<0,則方程f(x)=0在區(qū)間[a,b]上至少有一實(shí)根.
⑤若函數(shù)
f(x)= | (2-m)x+2m(x<1) | (m-1)|x+1|(x≥1) |
| |
在R上是增函數(shù),則m的取值范圍是1<m<2;
其中正確命題的序號(hào)有
①②④
①②④
(把所有正確命題的番號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
若在曲線f(x,y)=0(或y=f(x))上兩個(gè)不同點(diǎn)處的切線重合,則稱這條切線為曲線線f(x,y)=0(或y=f(x))的自公切線,下列方程的曲線:①x
2-y
2=1;②y=3sinx+4cosx;③y=x
2-|x|;④|x|+1=
,存在自公切線的是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
f(x)的定義域?yàn)镽,若存在常數(shù)M>0,使|f(x)|≤M|x|對(duì)一切實(shí)數(shù)x均成立,則稱f(x)為F函數(shù).現(xiàn)給出下列函數(shù):
①f(x)=2x;
②f(x)=x
2+1;
③
f(x)=(sinx+cosx);
④
f(x)=;
⑤f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),且對(duì)一切x
1,x
2均有|f(x
1)-f(x
2)|≤2|x
1-x
2|.
其中是F函數(shù)的函數(shù)有
①④⑤
①④⑤
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:徐州模擬
題型:解答題
設(shè)函數(shù)f(x)=a
2x
2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2,求a的值;
(2)關(guān)于x的不等式(x-1)
2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)
a=,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>