選修4—5:不等式選講(10分):

(1)已知正數(shù)a、b、c,求證:++

(2)已知正數(shù)a、b、c,滿足a+b+c=3,

求證:++≥1

 

【答案】

證明略

【解析】證明:(1)正數(shù)a、b、c,、、亦為正數(shù),所以由柯西不等式得

++)(a+b+c)≥(++=9  -------3分

               “=”成立當且僅當a=b=c           -----------4分

       即++                        ----------5分

       (2)由(1)得

++ ==  (“=”成立當且僅當a=b=c) ---7分

       由均值不等式得=1a+b+c≤3     

       (“=”成立當且僅當a=b=c)                    -----------9分

       0< 6+(a+b+c)≤9≥1

  即++≥1 (“=”成立當且僅當a=b=c) --------10分

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

選修4-5:不等式選講
設x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【選修4-5:不等式選講】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-5:不等式選講:
設正有理數(shù)x是
2
的一個近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求證:y<
2
;
(Ⅱ)比較y與x哪一個更接近于
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•鹽城模擬)(選修4-5:不等式選講)
已知a,b,c為正數(shù),且a2+a2+c2=14,試求a+2b+3c的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•烏魯木齊一模)選修4-5:不等式選講
設函數(shù),f(x)=|x-1|+|x-2|.
(I)求證f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范圍.

查看答案和解析>>

同步練習冊答案