已知A={x|-1<x<1},B={x|x≤-1或x≥0},則A∩B=(  )
A、{x|-1<x<1}
B、{x|0<x<1}
C、{x|x≥0}
D、{x|0≤x<1}
考點:交集及其運算
專題:集合
分析:由A與B,求出兩集合的交集即可.
解答: 解:∵A={x|-1<x<1},B={x|x≤-1或x≥0},
∴A∩B={x|0≤x<1},
故選:D.
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
3x+2y-6≥0
2x-y+2≥0
1≤x≤2
,則z=2x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

滿足:z(1+i)+i=0的復(fù)數(shù)z=( 。
A、-
1
2
+
1
2
i
B、-
1
2
-
1
2
i
C、
1
2
+
1
2
i
D、
1
2
-
1
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

lim
x→α
sinx-sinα
x-α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合M={x|1<x<2},N={x|x<a},若M⊆N,則實數(shù)a的取值范圍是( 。
A、[2,+∞)
B、(2,+∞)
C、[1,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y之間具有相關(guān)關(guān)系,其散點圖如圖所示,則其回歸直線方程可能是(  )
A、y=2x-1
B、y=2x+1
C、y=-2x+1
D、y=-2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin2x-2cosx+1最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)滿足f(-1)=
1
4
,對于x,y∈R,有4f(
x+y
2
)f(
x-y
2
)=f(x)+f(y),則f(-2013)=( 。
A、-
1
2
B、
1
2
C、-
1
4
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax+1(a>0).
(1)設(shè)g(x)=(2x+1)f(x),若y=g(x)與x軸恰有兩個不同的交點,試求a的取值集合;
(2)設(shè)h(x)=f(x)-x2-|1-
1
x
|(x∈(0,2]),是否同時存在實數(shù)m和M(M>m),使得對每一個t∈(m,M),直線y=t與曲線y=h(x)恒有三個公共點?若存在,求出M-m的最大值I(a);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案