若P是等邊三角形ABC所在平面外一點,PA=PB=PC=數(shù)學公式,△ABC的邊長為1,則PC和平面ABC所成的角是


  1. A.
    30°
  2. B.
    45°
  3. C.
    60°
  4. D.
    90°
A
分析:取AB中點D,連接PD、CD,可證明出平面PCD⊥平面ABC,從而得到∠PCD是直線PC和平面ABC所成的角.在△PCD中,算出PD、CD的長,用余弦定理算出cos∠PCD的值,從而得到∠PCD的度數(shù),即為PC和平面ABC所成的角.
解答:解:取AB中點D,連接PD、CD,
∵PA=PB,D為AB中點,∴PD⊥AB,同理可得CD⊥AB
∵PD、CD是平面PCD內的相交直線
∴AB⊥平面PCD
∵AB?平面ABC,∴平面PCD⊥平面ABC,
由此可得直線PC在平面ABC內的射影是直線CD,
∴∠PCD是直線PC和平面ABC所成的角
∵△PAB中,PA=PB=,AB=1
∴PD==
又∵正△ABC中,CD=AB=
∴△PCD中,cos∠PCD==
結合∠PCD是小于180°的正角,可得∠PCD=30°
即PC和平面ABC所成的角等于30°
故選:A
點評:本題在正三棱錐中求側棱與底面所成角的大小,著重考查了線面垂直、面面垂直的證明和直線與平面所成角大小的求法等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,在三棱錐P-ABC中,△PAB是等邊三角形,∠PAC=∠PBC=90°.
(1)證明:AB⊥PC;
(2)若PC=4,且平面PAC⊥平面PBC,求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三棱錐P-ABC中,三角形PAB是等邊三角形,∠PAC=∠PBC=90°
(Ⅰ)證明:AB⊥PC
(Ⅱ)若三角形ABC是邊長為2
2
的正三角形,(1)求證:面PAC⊥面PBC;(2)求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱錐P-ABC中,PA⊥平面ABC,△ABC是等邊三角形,E是BC中點,若PA=AB,則異面直線PE與AB所成角的余弦值(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:x-y=0,l2:x+y=0,點P是線性約束條件
x-y≥0
x+y≥0
所表示區(qū)域內一動點,PM⊥l1,PN⊥l2,垂足分別為M、N,且S△OMN=
1
2
(O為坐標原點).
(Ⅰ)求動點P的軌跡方程;
(Ⅱ)是否存在過點(2,0)的直線l與(Ⅰ)中軌跡交于點A、B,線段AB的垂直平分線交y軸于Q點,且使得△ABQ是等邊三角形.若存在,求出直線l的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,△PAB是等邊三角形,D,E分別為AB,PC的中點.
(1)在BC邊上是否存在一點F,使得PB∥平面DEF.
(2)若∠PAC=∠PBC=90°,證明:AB⊥PC;
(3)在(2)的條件下,若AB=2,AC=
5
,求三棱錐P-ABC的體積.

查看答案和解析>>

同步練習冊答案