【題目】已知橢圓的長軸長為,右頂點到左焦點的距離為,、分別為橢圓的左、右兩個焦點.
(1)求橢圓的方程;
(2)已知橢圓的切線(與橢圓有唯一交點)的方程為,切線與直線和直線分別交于點、,求證:為定值,并求此定值;
(3)設矩形的四條邊所在直線都和橢圓相切(即每條邊所在直線與橢圓有唯一交點),求矩形的面積的取值范圍.
【答案】(1);(2)證明見解析,;(3)
【解析】
(1)由長軸長可得,由右頂點到左焦點的距離為,進而求解即可;
(2)聯(lián)立可得,由相切可得,則,分別求得,,將代入,進而求解即可;
(3)分別討論與的情況,當時,設直線為,則,聯(lián)立直線與橢圓方程,令可得,即可代回求得直線的方程,進而求得直線與直線的距離,同理求得直線與直線的距離,從而利用均值不等式求解.
(1)由題,因為,,
所以,,則,
所以橢圓的標準方程為.
(2)證明:由(1),
聯(lián)立可得,
所以,即,
對于切線:,
當時,;當時,,
所以,
,
所以,為定值.
(3)由題,當時,;
當時,設邊所在直線為切線:,
所以,
聯(lián)立可得,
則,即,
所以直線的方程為;直線的方程為,
所以直線和直線的距離為,
同理,直線和直線的距離為,
所以,
因為,當且僅當,即時等號成立,
所以,
綜上,
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的標準方程是,設是橢圓的左焦點,為直線上任意一點,過做的垂線交橢圓于點,.
(1)證明:線段平分線段(其中為坐標原點);
(2)當最小時,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若,當x∈[0,1]時,f(x)=x,若在區(qū)間(﹣1,1]內(nèi),有兩個零點,則實數(shù)m的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)當時,若不等式恒成立,求實數(shù)的取值范圍;
(3)若存在,且當時,,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),(其中e為自然對數(shù)的底數(shù)).
(1)當時,討論函數(shù)的單調(diào)性;
(2)當時,若不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點到直線的距離為,過點的直線與交于、兩點.
(1)求拋物線的準線方程;
(2)設直線的斜率為,直線的斜率為,若,且與的交點在拋物線上,求直線的斜率和點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是各項均為正數(shù)的無窮數(shù)列,數(shù)列滿足(n),其中常數(shù)k為正整數(shù).
(1)設數(shù)列前n項的積,當k=2時,求數(shù)列的通項公式;
(2)若是首項為1,公差d為整數(shù)的等差數(shù)列,且=4,求數(shù)列的前2020項的和;
(3)若是等比數(shù)列,且對任意的n,,其中k≥2,試問:是等比數(shù)列嗎?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出以下四個命題:
①設是空間中的三條直線,若,,則.
②在面積為的的邊上任取一點,則的面積大于的概率為.
③已知一個回歸直線方程為,則.
④數(shù)列為等差數(shù)列的充要條件是其通項公式為的一次函數(shù).
其中正確命題的充號為________.(把所有正確命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某產(chǎn)品自生產(chǎn)并投入市場以來,生產(chǎn)企業(yè)為確保產(chǎn)品質(zhì)量,決定邀請第三方檢測機構(gòu)對產(chǎn)品進行質(zhì)量檢測,并依據(jù)質(zhì)量指標Z來衡量產(chǎn)品的質(zhì)量.當時,產(chǎn)品為優(yōu)等品;當時,產(chǎn)品為一等品;當時,產(chǎn)品為二等品.第三方檢測機構(gòu)在該產(chǎn)品中隨機抽取500件,繪制了這500件產(chǎn)品的質(zhì)量指標的條形圖.用隨機抽取的500件產(chǎn)品作為樣本,估計該企業(yè)生產(chǎn)該產(chǎn)品的質(zhì)量情況,并用頻率估計概率.
(1)從該企業(yè)生產(chǎn)的所有產(chǎn)品中隨機抽取4件,求至少有1件優(yōu)等品的概率;
(2)現(xiàn)某人決定購買80件該產(chǎn)品.已知每件成本1000元,購買前,邀請第三方檢測機構(gòu)對要購買的80件產(chǎn)品進行抽樣檢測,買家、企業(yè)及第三方檢測機構(gòu)就檢測方案達成以下協(xié)議:從80件產(chǎn)品中隨機抽出4件產(chǎn)品進行檢測,若檢測出3件或4件為優(yōu)等品,則按每件1600元購買,否則按每件1500元購買,每件產(chǎn)品的檢測費用250元由企業(yè)承擔.記企業(yè)的收益為X元,求X的分布列與數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com