已知n是正偶數(shù),用數(shù)學歸納法證明時,若已假設(shè)n=k(k≥2且為偶數(shù))時命題為真,則還需證明( )
A.n=k+1時命題成立 |
B.n=k+2時命題成立 |
C.n=2k+2時命題成立 |
D.n=2(k+2)時命題成立 |
因n是正偶數(shù),故只需證等式對所有偶數(shù)都成立,因k的下一個偶數(shù)是k+2,故選B.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
用數(shù)學歸納法證明不等式:
>1(n∈N
*且n>1).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(11分)探究:是否存在常數(shù)
a、
b、
c使得等式1·2
2+2·3
2+…+
n(
n+1)
2=
(
an2+
bn+
c)
對對一切正自然數(shù)
n均成立,若存在求出
a、
b、
c,并證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
用數(shù)學歸納法證明
(
)時,從“n=
”到“n=
”的證明,左邊需增添的代數(shù)式是___________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
用數(shù)學歸納法證明“
n3+(
n+1)
3+(
n+2)
3,(
n∈N
+)能被9整除”,要利
用歸納法假設(shè)證
n=
k+1時的情況,只需展開( ).
A.(k+3)3 | B.(k+2)3 |
C.(k+1)3 | D.(k+1)3+(k+2)3 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,在圓內(nèi):畫1條弦,把圓分成2部分;畫2條相交的弦,把圓分成4部分,畫3條兩兩相交的弦,把圓最多分成7部分;…,畫
條兩兩相交的弦,把圓最多分成
部分.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
是等差數(shù)列,
設(shè)
N
+),
N
+),問P
n與Q
n哪一個大?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
用數(shù)學歸納法證明:
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知f(n)=1+
+
+…+
(n∈N
*),用數(shù)學歸納法證明f(2
n)>
時,f(2
k+1)-f(2
k)等于
.
查看答案和解析>>